学习如何通过构建自己的模型来理解生成式人工智能,这些模型可以撰写连贯的文本、生成逼真的图像,甚至创作出栩栩如生的音乐。 《使用PyTorch学习生成式人工智能》 通过从头开始构建工作中的AI模型,教授生成式AI的基本机制。在整个过程中,您将使用直观的PyTorch框架,这对任何使用过Python数据工具的人来说都会非常熟悉。在学习的过程中,您将掌握生成对抗网络(GANs)、Transformer、大型语言模型(LLMs)、变分自编码器、扩散模型、LangChain等的基本知识!在**《使用PyTorch学习生成式人工智能》**中,您将构建这些令人惊叹的模型:
Transformers、生成对抗网络(GANs)、扩散模型、大型语言模型(LLMs)等强大的深度学习模式彻底改变了我们处理文本、图像和声音的方式。生成式AI乍一看像是魔法,但通过一点Python、PyTorch框架和一些实践,您可以在自己的笔记本电脑上构建有趣且实用的模型。本书将向您展示如何实现这些。
《使用PyTorch学习生成式人工智能》 通过帮助您构建自己的工作AI模型来介绍生成式AI的基本机制。您将从使用GAN创建简单的图像开始,接着逐行编写一个语言翻译的Transformer。在充满趣味且引人入胜的项目中,您将训练模型生成动漫图像、撰写海明威风格的文章、创作莫扎特般的音乐等等。您只需掌握Python和一些机器学习的基础知识,其他内容在学习过程中会逐步掌握!
示例代码使用简单的Python。无需具备深度学习经验。
Mark Liu是肯塔基大学金融硕士项目的创始主任。 本书的技术编辑为Emmanuel Maggiori。
第一部分
什么是生成式AI以及为什么选择PyTorch?
使用PyTorch进行深度学习
生成对抗网络:形状和数字生成 第二部分
使用生成对抗网络生成图像
选择生成图像的特征
CycleGAN:将金发转换为黑发
使用变分自编码器生成图像 第三部分
使用递归神经网络进行文本生成
注意力机制和Transformer的逐行实现
训练Transformer翻译英语到法语
从零开始构建生成预训练的Transformer
训练Transformer生成文本 第四部分
使用MuseGAN进行音乐生成
构建并训练音乐Transformer
扩散模型与文本生成图像的Transformers
预训练的大型语言模型和LangChain库 附录A. 安装Python、Jupyter Notebook和PyTorch B. 最低要求的读者资格和深度学习基础
Dr. Mark Liu是肯塔基大学金融硕士项目的终身教授和创始主任。他拥有超过20年的编程经验,并获得了波士顿学院的金融学博士学位。