近年来深度学习在图像、语音、自然语言处理等诸多领域得到广泛应用,但随着人们对深度学习的训练速度和数据处理能力的需求不断提升,传统的基于单机的训练过程愈发难以满足要求,分布式的深度学习训练方法成为持续提升算力的有效途径.其中训练过程中节点间网络的通信性能至关重要,直接影响训练性能.分析了分布式深度学习中的性能瓶颈,在此基础上对目前常用的网络性能优化方案进行综述,详细阐述了目前最新的超大规模分布式训练的体系结构、优化方法、训练环境和最有效的优化方法,最后对分布式训练仍然存在的困难进行了总结,对其未来研究方向进行了展望.
http://crad.ict.ac.cn/CN/10.7544/issn1000-1239.2021.20190881