推荐系统在我们的日常生活中发挥着越来越重要的作用,尤其是在许多面向用户的在线服务中,它在缓解信息过载方面发挥着重要的作用。推荐系统旨在识别一组最能匹配用户显性或隐性偏好的对象(即物品),通过利用用户和物品的交互来提高匹配精度。随着深度神经网络(DNNs)在过去几十年的快速发展,推荐技术取得了良好的性能。然而,我们在设计深度推荐系统(DRS)时面临三个内在挑战: 1) 现有的大多数DRS是基于手工组件开发的,这需要大量的机器学习和推荐系统的专家知识; 2) 人为误差和偏见会导致次优,降低推荐有效性; 3) 在不同的推荐场景中,通常需要非平凡的时间和工程努力来设计特定于任务的组件。
在本教程中,我们将全面介绍高级自动机器学习(AutoML)技术在深度推荐系统中解决上述问题的最新进展。希望相关领域的学术研究者和行业从业者能够对空间有深刻的理解和准确的洞察,激发更多的想法和讨论,并在推荐中推动技术的发展