前言

力求每行代码都有注释,重要部分注明公式来源。具体会追求下方这样的代码,学习者可以照着公式看程序,让代码有据可查。

image

如果时间充沛的话,可能会试着给每一章写一篇博客。先放个博客链接吧:传送门

注:其中Mnist数据集已转换为csv格式,由于体积为107M超过限制,改为压缩包形式。下载后务必先将Mnist文件内压缩包直接解压。

实现

第二章 感知机:

博客:统计学习方法|感知机原理剖析及实现
实现:perceptron/perceptron_dichotomy.py

第三章 K近邻:

博客:统计学习方法|K近邻原理剖析及实现
实现:KNN/KNN.py

第四章 朴素贝叶斯:

博客:统计学习方法|朴素贝叶斯原理剖析及实现
实现:NaiveBayes/NaiveBayes.py

第五章 决策树:

博客:统计学习方法|决策树原理剖析及实现
实现:DecisionTree/DecisionTree.py

第六章 逻辑斯蒂回归与最大熵模型:

博客:逻辑斯蒂回归:统计学习方法|逻辑斯蒂原理剖析及实现
博客:最大熵:统计学习方法|最大熵原理剖析及实现

实现:逻辑斯蒂回归:Logistic_and_maximum_entropy_models/logisticRegression.py
实现:最大熵:Logistic_and_maximum_entropy_models/maxEntropy.py

第七章 支持向量机:

博客:统计学习方法|支持向量机(SVM)原理剖析及实现
实现:SVM/SVM.py

第八章 提升方法:

实现:AdaBoost/AdaBoost.py

第九章 EM算法及其推广:

实现:EM/EM.py

第十章 隐马尔可夫模型:

实现:HMM/HMM.py

联系

项目未来短期内不再更新,如有疑问欢迎使用issue,也可添加微信或邮件联系。
此外如果有需要MSRA实习内推的同学,欢迎骚扰。
Wechat: lvtengchao(备注“blog-学校/单位-姓名”)
Email: lvtengchao@pku.edu.cn

成为VIP会员查看完整内容
48

相关内容

【经典书】概率统计导论第五版,730页pdf
专知会员服务
238+阅读 · 2020年7月28日
《深度学习》圣经花书的数学推导、原理与Python代码实现
【新书】Pro 机器学习算法Python实现,379页pdf
专知会员服务
199+阅读 · 2020年2月11日
资源 | 李航老师《统计学习方法》(第2版)课件下载
专知会员服务
249+阅读 · 2019年11月10日
《机器学习实战》代码(基于Python3)
专知
32+阅读 · 2019年10月14日
统计学习方法第一版课程PPT
AINLP
13+阅读 · 2019年5月14日
免费|机器学习算法Python实现
全球人工智能
5+阅读 · 2018年1月2日
Deep Randomized Ensembles for Metric Learning
Arxiv
5+阅读 · 2018年9月4日
Arxiv
3+阅读 · 2018年4月18日
VIP会员
相关VIP内容
微信扫码咨询专知VIP会员