生成式人工智能(GAI)和大语言模型(LLM)是以无监督或半监督方式运行的机器学习算法。这些算法利用现有内容,如文本、照片、音频、视频和代码,生成新内容。其主要目标是生成真实且新颖的材料。此外,它们在生成新材料的数量上没有限制。新材料可以通过应用程序接口(APIs)或自然语言接口生成,例如OpenAI开发的ChatGPT和Google开发的Bard。 生成式人工智能(AI)领域的独特之处在于其发展和成熟过程极为透明,公众可以广泛观察其进展。目前的人工智能时代受到有效利用其能力以提升企业运营的要求影响。具体而言,属于生成式AI范畴的大语言模型(LLM)能力,具有重新定义创新和生产力极限的潜力。然而,企业在努力引入新技术的同时,可能会危及数据隐私、长期竞争力和环境可持续性。 本书深入探讨生成式人工智能(GAI)和LLM。它考察了生成AI模型的历史与演变发展,以及由这些模型和LLM产生的挑战和问题。本书还讨论了基于生成AI的系统的必要性,并探讨了为生成AI模型开发的各种训练方法,包括LLM预训练、LLM微调和基于人类反馈的强化学习。此外,它探讨了与这些模型相关的潜在用例、应用和伦理考虑。本书最后讨论了生成AI的未来方向,并呈现了多项案例研究,突显生成AI和LLM的应用。