Human mobility similarity comparison plays a critical role in mobility estimation/prediction model evaluation, mobility clustering and mobility matching, which exerts an enormous impact on improving urban mobility, accessibility, and reliability. By expanding origin-destination matrix, we propose a concept named mobility tableau, which is an aggregated tableau representation to the population flow distributed between different location pairs of a study site and can be represented by a vector graph. Compared with traditional OD matrix-based mobility comparison, mobility tableau comparison provides high-dimensional similarity information, including volume similarity, spatial similarity, mass inclusiveness and structure similarity. A novel mobility tableaus similarity measurement method is proposed by optimizing the least spatial cost of transforming the vector graph for one mobility tableau into the other and is optimized to be efficient. The robustness of the measure is supported through several sensitive analysis on GPS based mobility tableau. The better performance of the approach compared with traditional mobility comparison methods in two case studies demonstrate the practicality and superiority, while one study is estimated mobility tableaus validation and the other is different cities' mobility tableaus comparison.
翻译:与传统的基于OD矩阵的流动比较相比,流动表比较提供了高维的类似性信息,包括数量相似性、空间相似性、大规模包容性和结构相似性。通过扩大来源地-目的地矩阵,我们提出了一个名为流动表,这是在研究地点不同地点对口之间分布的人口流动汇总表,可以用矢量图表示。与传统的基于OD矩阵的流动比较相比,流动表比较提供了高维的类似性信息,包括数量相似性、空间相似性、大规模包容性和结构相似性。通过优化将一个流动表的矢量图转换为另一个流动表的空间成本,提出了一个新的类似性计量方法。通过对基于流动表的全球定位系统进行的若干敏感分析,支持该措施的稳健性。在两个案例研究中,与传统的流动比较方法相比,该方法的绩效显示了实用性和优越性,而一项研究是对流动表的估计验证,另一项研究是不同的城市流动表比较。