Grassmann manifolds have been widely used to represent the geometry of feature spaces in a variety of problems in computer vision including but not limited to face recognition, action recognition, subspace clustering and motion segmentation. For these problems, the features usually lie in a very high-dimensional Grassmann manifold and hence an appropriate dimensionality reduction technique is called for in order to curtail the computational burden. To this end, the Principal Geodesic Analysis (PGA), a nonlinear extension of the well known principal component analysis, is applicable as a general tool to many Riemannian manifolds. In this paper, we propose a novel dimensionality reduction framework suited for Grassmann manifolds by utilizing the geometry of the manifold. Specifically, we project points in a Grassmann manifold to an embedded lower dimensional Grassmann manifold. A salient feature of our method is that it leads to higher expressed variance compared to PGA which we demonstrate via synthetic and real data experiments.
翻译:格拉斯曼元件被广泛用于在计算机视觉的各种问题中代表地貌空间的几何学分数,这些问题包括但不限于面对识别、行动识别、子空间集群和运动分离。对于这些问题,特征通常存在于一个非常高的维度格拉斯曼元件中,因此需要适当的维度减少技术来减少计算负担。为此,作为众所周知的主要元件分析的非线性延伸的首席大地测量分析(PGA)作为通用工具适用于许多里伊曼元件。在本文中,我们提出一个适合格拉斯曼元件的新式的维度减少框架,利用这些元件的几何法。具体地说,我们用格拉斯曼元的点投射在嵌入的低维度格拉斯曼元件中,我们方法的一个突出特征是,它导致与PGA相比,我们通过合成的和真实的数据实验所展示的PGA存在更大的差异。