Cybersecurity is being fundamentally reshaped by foundation-model-based artificial intelligence. Large language models now enable autonomous planning, tool orchestration, and strategic adaptation at scale, challenging security architectures built on static rules, perimeter defenses, and human-centered workflows. This chapter argues for a shift from prevention-centric security toward agentic cyber resilience. Rather than seeking perfect protection, resilient systems must anticipate disruption, maintain critical functions under attack, recover efficiently, and learn continuously. We situate this shift within the historical evolution of cybersecurity paradigms, culminating in an AI-augmented paradigm where autonomous agents participate directly in sensing, reasoning, action, and adaptation across cyber and cyber-physical systems. We then develop a system-level framework for designing agentic AI workflows. A general agentic architecture is introduced, and attacker and defender workflows are analyzed as coupled adaptive processes, and game-theoretic formulations are shown to provide a unifying design language for autonomy allocation, information flow, and temporal composition. Case studies in automated penetration testing, remediation, and cyber deception illustrate how equilibrium-based design enables system-level resiliency design.
翻译:基于基础模型的人工智能正在从根本上重塑网络安全。大型语言模型现已能够实现大规模自主规划、工具编排和战略适应,这对建立在静态规则、边界防御和以人为中心的工作流程之上的安全架构构成了挑战。本章主张从以预防为中心的安全转向智能体驱动的网络韧性。韧性系统不应追求完美的防护,而必须能够预见干扰、在遭受攻击时维持关键功能、高效恢复并持续学习。我们将这一转变置于网络安全范式历史演进的背景下,最终提出一种人工智能增强的范式,其中自主智能体直接参与网络及网络物理系统的感知、推理、行动和适应过程。随后,我们为设计智能体人工智能工作流程开发了一个系统级框架。我们引入了一种通用的智能体架构,将攻击者和防御者的工作流程分析为耦合的自适应过程,并论证了博弈论公式可为自主性分配、信息流和时间组合提供统一的设计语言。在自动化渗透测试、修复和网络欺骗方面的案例研究表明,基于均衡的设计如何实现系统级的韧性设计。