For a finite collection of connected graphs $\mathcal{F}$, the $\mathcal{F}$-MINOR-DELETION problem consists in, given a graph $G$ and an integer $\ell$, deciding whether $G$ contains a vertex set of size at most $\ell$ whose removal results in an $\mathcal{F}$-minor-free graph. We lift the existence of (approximate) polynomial kernels for $\mathcal{F}$-MINOR-DELETION by the solution size to (approximate) polynomial kernels parameterized by the vertex-deletion distance to graphs of bounded elimination distance to $\mathcal{F}$-minor-free graphs. This results in exact polynomial kernels for every family $\mathcal{F}$ that contains a planar graph, and an approximate polynomial kernel for PLANAR VERTEX DELETION. Moreover, combining our result with a previous lower bound, we obtain the following infinite set of dichotomies, assuming $NP \not\subseteq coNP/poly$: for any finite set $\mathcal{F}$ of biconnected graphs on at least three vertices containing a planar graph, and any minor-closed class of graphs $\mathcal{C}$, $\mathcal{F}$-MINOR-DELETION admits a polynomial kernel parameterized by the vertex-deletion distance to $\mathcal{C}$ if and only if $\mathcal{C}$ has bounded elimination distance to $\mathcal{F}$-minor-free graphs. For instance, this yields dichotomies for CACTUS VERTEX DELETION, OUTERPLANAR VERTEX DELETION, and TREEWIDTH-$t$ VERTEX DELETION for every integer $t \geq 0$. Prior to our work, such dichotomies were only known for the particular cases of VERTEX COVER and FEEDBACK VERTEX SET. Our approach builds on the techniques developed by Jansen and Pieterse [Theor. Comput. Sci. 2020] and also uses adaptations of some of the results by Jansen, de Kroon, and Wlodarczyk [STOC 2021].
翻译:对于一个有限连通图集合 $\mathcal{F}$,$\mathcal{F}$-MINOR-DELETION 问题在于:给定一个图 $G$ 和一个整数 $\ell$,判断 $G$ 中是否存在一个大小至多为 $\ell$ 的顶点集,移除该集合后得到的图是 $\mathcal{F}$-minor-free 的。我们将 $\mathcal{F}$-MINOR-DELETION 问题基于解大小的(近似)多项式核的存在性,提升为基于顶点删除距离到具有有界消去距离的 $\mathcal{F}$-minor-free 图的(近似)多项式核。这为每个包含平面图的族 $\mathcal{F}$ 产生了精确多项式核,并为 PLANAR VERTEX DELETION 问题提供了近似多项式核。此外,结合我们之前的下界结果,在假设 $NP \not\subseteq coNP/poly$ 的前提下,我们获得了以下无限组二分性:对于任何包含平面图且顶点数至少为三的有限双连通图集合 $\mathcal{F}$,以及任何小图封闭的图类 $\mathcal{C}$,$\mathcal{F}$-MINOR-DELETION 问题基于顶点删除距离到 $\mathcal{C}$ 的参数化存在多项式核,当且仅当 $\mathcal{C}$ 具有有界消去距离到 $\mathcal{F}$-minor-free 图。例如,这为 CACTUS VERTEX DELETION、OUTERPLANAR VERTEX DELETION 以及每个整数 $t \geq 0$ 的 TREEWIDTH-$t$ VERTEX DELETION 问题产生了二分性。在我们的工作之前,此类二分性仅已知适用于 VERTEX COVER 和 FEEDBACK VERTEX SET 的特殊情况。我们的方法建立在 Jansen 和 Pieterse [Theor. Comput. Sci. 2020] 开发的技术基础上,并采用了 Jansen、de Kroon 和 Wlodarczyk [STOC 2021] 部分结果的适应性调整。