In medicine, researchers often seek to infer the effects of a given treatment on patients' outcomes. However, the standard methods for causal survival analysis make simplistic assumptions about the data-generating process and cannot capture complex interactions among patient covariates. We introduce the Dynamic Survival Transformer (DynST), a deep survival model that trains on electronic health records (EHRs). Unlike previous transformers used in survival analysis, DynST can make use of time-varying information to predict evolving survival probabilities. We derive a semi-synthetic EHR dataset from MIMIC-III to show that DynST can accurately estimate the causal effect of a treatment intervention on restricted mean survival time (RMST). We demonstrate that DynST achieves better predictive and causal estimation than two alternative models.
翻译:在医学方面,研究人员往往试图推断某种治疗对病人结果的影响,然而,因果生存分析的标准方法对数据生成过程作了简单化的假设,无法捕捉病人同化体之间的复杂互动。我们引入了动态生存变异器(DynST ) ( DynST ) ( DynST ) ( DynST ) ( DynST ), 这是一种通过电子健康记录来培训的深度生存模型。 与以往用于生存分析的变异器不同, DynST 可以利用时间变化的信息来预测不断演变的生存概率。 我们从MIMIC-III 中获取了一个半合成的EHR数据集,以表明DynST 能够准确估计治疗干预对限制平均存活时间的因果关系。 我们证明DynST 的预测和因果估计比两种替代模型( RMST)要好。