Fairness of exposure is a commonly used notion of fairness for ranking systems. It is based on the idea that all items or item groups should get exposure proportional to the merit of the item or the collective merit of the items in the group. Often, stochastic ranking policies are used to ensure fairness of exposure. Previous work unrealistically assumes that we can reliably estimate the expected exposure for all items in each ranking produced by the stochastic policy. In this work, we discuss how to approach fairness of exposure in cases where the policy contains rankings of which, due to inter-item dependencies, we cannot reliably estimate the exposure distribution. In such cases, we cannot determine whether the policy can be considered fair. Our contributions in this paper are twofold. First, we define a method called FELIX for finding stochastic policies that avoid showing rankings with unknown exposure distribution to the user without having to compromise user utility or item fairness. Second, we extend the study of fairness of exposure to the top-k setting and also assess FELIX in this setting. We find that FELIX can significantly reduce the number of rankings with unknown exposure distribution without a drop in user utility or fairness compared to existing fair ranking methods, both for full-length and top-k rankings. This is an important first step in developing fair ranking methods for cases where we have incomplete knowledge about the user's behaviour.


翻译:曝光的公平性是对排名制度的通常使用的公平性概念。 它基于所有项目或项目组的曝光量应与项目的价值或该组项目的集体价值成比例的理念。 通常使用随机性排名政策来确保曝光的公平性。 先前的工作不切实际地假定,我们可以可靠地估计每个排名中所有项目的预期曝光量, 而不必损害用户的效用或项目公平性。 在这项工作中,我们讨论了如何在政策包含排名的情况下对待曝光的公平性。 由于项目间依赖性,我们无法可靠地估计风险的分布。 在这种情况下,我们无法确定政策是否公平。 我们在本文中的贡献是双重的。 首先,我们定义了一种叫FELIX的方法,用于寻找避免向用户显示未为人知的曝光量分布而不必损害用户效用或项目公平性。 其次,我们将接触的公平性研究推广到顶级设置,并在这一背景下评估FELIX。 我们发现,FELIX可以大幅减少风险等级的数量,而没有为人知的披露率。 在用户的排名中,在用户的排名中,这种重要的排名中,我们不用的排名中,或者在排名中,在排名中,我们现有的排名中,在排名中,在排名中,在排名中,在排名中,在排名中,在排名中,在排名中,在排名中,这是一种重要的排名中,在排名中,在排名中,排名中,在排名中,在排名中,在排名中,我们是排名中,在排名中,比的排名中,在排名中,在排名中,排名中,排名的排名的排名中,比一个重要。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月11日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员