Fixing bugs in a timely manner lowers various potential costs in software maintenance. However, manual bug fixing scheduling can be time-consuming, cumbersome, and error-prone. In this paper, we propose the Schedule and Dependency-aware Bug Triage (S-DABT), a bug triaging method that utilizes integer programming and machine learning techniques to assign bugs to suitable developers. Unlike prior works that largely focus on a single component of the bug reports, our approach takes into account the textual data, bug fixing costs, and bug dependencies. We further incorporate the schedule of developers in our formulation to have a more comprehensive model for this multifaceted problem. As a result, this complete formulation considers developers' schedules and the blocking effects of the bugs while covering the most significant aspects of the previously proposed methods. Our numerical study on four open-source software systems, namely, EclipseJDT, LibreOffice, GCC, and Mozilla, shows that taking into account the schedules of the developers decreases the average bug fixing times. We find that S-DABT leads to a high level of developer utilization through a fair distribution of the tasks among the developers and efficient use of the free spots in their schedules. Via the simulation of the issue tracking system, we also show how incorporating the schedule in the model formulation reduces the bug fixing time, improves the assignment accuracy, and utilizes the capability of each developer without much comprising in the model run times. We find that S-DABT decreases the complexity of the bug dependency graph by prioritizing blocking bugs and effectively reduces the infeasible assignment ratio due to bug dependencies. Consequently, we recommend considering developers' schedules while automating bug triage.


翻译:及时修正错误会降低软件维护方面的各种潜在成本。 但是, 人工错误修正时间安排可能会耗费时间、 繁琐和容易出错。 在本文中, 我们提议使用排程和依赖性识别错误错误三重( S- DABT), 这是一种错误三重方法, 使用整数编程和机器学习技术来向合适的开发者分配错误。 与以往主要侧重于错误报告单一部分的工作不同, 我们的方法会考虑到文本数据、 错误修正成本和错误依赖性。 我们进一步将开发者的时间表纳入我们的配方, 以便有一个更全面的模型来应对这一多方面的问题。 因此, 完整的配制会考虑到开发者的时间表以及错误的阻断效果。 我们用四个开源软件系统的数字研究, 包括 EclipsseJDT、 Libreoffice、 GCC 和 Mozilla, 表明, 计及设置者错误计时的计时, 将找到平均错误修正时间。 我们发现, S- DABT 会降低开发者的进度, 导致一个高水平的开发者在不全面模型中, 将错误差分数 。

0
下载
关闭预览

相关内容

程序猿的天敌 有时是一个不能碰的magic
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员