Feature importance (FI) estimates are a popular form of explanation, and they are commonly created and evaluated by computing the change in model confidence caused by removing certain input features at test time. For example, in the standard Sufficiency metric, only the top-k most important tokens are kept. In this paper, we study several under-explored dimensions of FI-based explanations, providing conceptual and empirical improvements for this form of explanation. First, we advance a new argument for why it can be problematic to remove features from an input when creating or evaluating explanations: the fact that these counterfactual inputs are out-of-distribution (OOD) to models implies that the resulting explanations are socially misaligned. The crux of the problem is that the model prior and random weight initialization influence the explanations (and explanation metrics) in unintended ways. To resolve this issue, we propose a simple alteration to the model training process, which results in more socially aligned explanations and metrics. Second, we compare among five approaches for removing features from model inputs. We find that some methods produce more OOD counterfactuals than others, and we make recommendations for selecting a feature-replacement function. Finally, we introduce four search-based methods for identifying FI explanations and compare them to strong baselines, including LIME, Integrated Gradients, and random search. On experiments with six diverse text classification datasets, we find that the only method that consistently outperforms random search is a Parallel Local Search that we introduce. Improvements over the second-best method are as large as 5.4 points for Sufficiency and 17 points for Comprehensiveness. All supporting code is publicly available at https://github.com/peterbhase/ExplanationSearch.


翻译:地物重要性 (FI) 估计是一种流行的解释形式, 通常通过计算测试时去除某些输入特征而导致的模型信任度变化, 来创建和评估这些估算。 例如, 在标准量化标准中, 仅保留最上至最重要的符号。 在本文中, 我们研究FI 解释的一些探索不足的层面, 为这种解释形式提供概念和经验上的改进。 首先, 我们提出一个新的论点, 为何在创建或评价解释时从输入中去除特性会有问题: 这些反事实投入在测试时间消除某些输入时导致的模型信任度变化, 意味着由此产生的解释在社会上是错的。 问题的关键在于, 模型前和随机加权初始化会以无意的方式影响解释( 和解释指标 ) 。 为了解决这个问题, 我们建议对模型培训进程进行简单的修改, 从而在社会上更加一致的解释和衡量。 第二, 我们比较了从模型输入的特性中去除的五种方法。 我们发现, OOD 相对事实性比其他模型(OOOD) 错误, 意味着由此产生的解释方法在社会上是错误性错误。 。 我们为选择一个持续的搜索方法, 包括精确的搜索 搜索 基础 。 最后, 搜索 搜索 搜索 搜索 系统 搜索 。 最后, 搜索 搜索 搜索 搜索 搜索 搜索 以 以 以 以 搜索 搜索 搜索 以 以 搜索 以 以 格式 格式 格式 4 搜索 格式为 。

0
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
3+阅读 · 2018年11月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Distance covariance for random fields
Arxiv
0+阅读 · 2021年7月22日
Arxiv
1+阅读 · 2021年7月22日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
3+阅读 · 2018年11月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员