We present a systematic investigation of convolutional autoencoders for the reduced-order representation of three-dimensional interfacial multiphase flows. Focusing on the reconstruction of phase indicators, we examine how the choice of interface representation, including sharp, diffuse, and level-set formulations, impacts reconstruction accuracy across a range of interface complexities. Training and validation are performed using both synthetic datasets with controlled geometric complexity and high-fidelity simulations of multiphase homogeneous isotropic turbulence. We show that the interface representation plays a critical role in autoencoder performance. Excessively sharp interfaces lead to the loss of small-scale features, while overly diffuse interfaces degrade overall accuracy. Across all datasets and metrics considered, a moderately diffuse interface provides the best balance between preserving fine-scale structures and achieving accurate reconstructions. These findings elucidate key limitations and best practices for dimensionality reduction of multiphase flows using autoencoders. By clarifying how interface representations interact with the inductive biases of convolutional neural networks, this work lays the foundation for decoupling the training of autoencoders for accurate state compression from the training of surrogate models for temporal forecasting or input-output prediction in latent space.
翻译:本文系统研究了卷积自编码器在三维界面多相流降阶表示中的应用。聚焦于相指标的重建,我们考察了界面表示形式(包括锐利界面、弥散界面和水平集表述)的选择如何影响不同界面复杂度下的重建精度。训练与验证工作同时采用了具有可控几何复杂度的合成数据集和多相均匀各向同性湍流的高保真模拟数据。研究表明,界面表示形式对自编码器性能起着关键作用:过度锐利的界面会导致小尺度特征丢失,而过度弥散的界面则会降低整体精度。在所有考虑的数据集和评估指标中,适度弥散的界面能在保留精细结构与实现准确重建之间达到最佳平衡。这些发现阐明了使用自编码器进行多相流降维的关键局限性与最佳实践。通过阐明界面表示形式如何与卷积神经网络的归纳偏置相互作用,本研究为解耦自编码器训练奠定了基础——既可实现精确状态压缩,又能为潜在空间中的时间预测或输入-输出预测训练代理模型。