Controllable summarization moves beyond generic outputs toward human-aligned summaries guided by specified attributes. In practice, the interdependence among attributes makes it challenging for language models to satisfy correlated constraints consistently. Moreover, previous approaches often require per-attribute fine-tuning, limiting flexibility across diverse summary attributes. In this paper, we propose adaptive planning for multi-attribute controllable summarization (PACO), a training-free framework that reframes the task as planning the order of sequential attribute control with a customized Monte Carlo Tree Search (MCTS). In PACO, nodes represent summaries, and actions correspond to single-attribute adjustments, enabling progressive refinement of only the attributes requiring further control. This strategy adaptively discovers optimal control orders, ultimately producing summaries that effectively meet all constraints. Extensive experiments across diverse domains and models demonstrate that PACO achieves robust multi-attribute controllability, surpassing both LLM-based self-planning models and fine-tuned baselines. Remarkably, PACO with Llama-3.2-1B rivals the controllability of the much larger Llama-3.3-70B baselines. With larger models, PACO achieves superior control performance, outperforming all competitors.
翻译:可控摘要技术旨在超越通用摘要生成,转向由指定属性引导的、与人类偏好对齐的摘要。在实践中,属性间的相互依赖关系使得语言模型难以持续满足相互关联的约束条件。此外,先前的方法通常需要对每个属性进行微调,这限制了其在多样化摘要属性间的灵活性。本文提出了一种用于多属性可控摘要的自适应规划方法(PACO),这是一个无需训练的框架,其通过定制的蒙特卡洛树搜索(MCTS)将该任务重新规划为顺序属性控制的次序问题。在PACO中,节点代表摘要,动作对应于单属性调整,从而能够仅对需要进一步控制的属性进行渐进式优化。该策略自适应地发现最优的控制顺序,最终生成能有效满足所有约束的摘要。跨多个领域和模型的广泛实验表明,PACO实现了鲁棒的多属性可控性,超越了基于大语言模型的自规划模型以及经过微调的基线方法。值得注意的是,采用Llama-3.2-1B的PACO在可控性上可与规模大得多的Llama-3.3-70B基线相媲美。当使用更大模型时,PACO实现了更优的控制性能,超越了所有竞争对手。