We propose a Bayesian tensor regression model to accommodate the effect of multiple factors on phenotype prediction. We adopt a set of prior distributions that resolve identifiability issues that may arise between the parameters in the model. Simulation experiments show that our method out-performs previous related models and machine learning algorithms under different sample sizes and degrees of complexity. We further explore the applicability of our model by analysing real-world data related to wheat production across Ireland from 2010 to 2019. Our model performs competitively and overcomes key limitations found in other analogous approaches. Finally, we adapt a set of visualisations for the posterior distribution of the tensor effects that facilitate the identification of optimal interactions between the tensor variables whilst accounting for the uncertainty in the posterior distribution.
翻译:我们提出贝叶斯高温回归模型,以适应多种因素对苯型预测的影响。我们采用一套先前的分布法,解决模型参数之间可能出现的可识别性问题。模拟实验表明,我们的方法在不同的样本大小和复杂度下,优于以往的相关模型和机器学习算法。我们进一步探讨我们模型的适用性,方法是分析2010年至2019年爱尔兰各地小麦生产的真实世界数据。我们的模式具有竞争力,克服了其他类似方法中发现的关键限制。最后,我们调整了一套可视化图象,以利确定高温变量之间最佳互动,同时计算后方分布的不确定性。