Witnessing the rapid progress and accelerated commercialization made in recent years for the introduction of air taxi services in near future across metropolitan cities, our research focuses on one of the most important consideration for such services, i.e., infrastructure planning (also known as skyports). We consider design of skyport locations for air taxis accessing airports, where we present the skyport location problem as a modified single-allocation p-hub median location problem integrating choice-constrained user mode choice behavior into the decision process. Our approach focuses on two alternative objectives i.e., maximizing air taxi ridership and maximizing air taxi revenue. The proposed models in the study incorporate trade-offs between trip length and trip cost based on mode choice behavior of travelers to determine optimal choices of skyports in an urban city. We examine the sensitivity of skyport locations based on two objectives, three air taxi pricing strategies, and varying transfer times at skyports. A case study of New York City is conducted considering a network of 149 taxi zones and 3 airports with over 20 million for-hire-vehicles trip data to the airports to discuss insights around the choice of skyport locations in the city, and demand allocation to different skyports under various parameter settings. Results suggest that a minimum of 9 skyports located between Manhattan, Queens and Brooklyn can adequately accommodate the airport access travel needs and are sufficiently stable against transfer time increases. Findings from this study can help air taxi providers strategize infrastructure design options and investment decisions based on skyport location choices.


翻译:近些年来,为在不远的将来跨大城市引入航空出租车服务,我们目睹了快速进展和加速商业化,我们的研究侧重于这类服务最重要的考虑因素之一,即基础设施规划(又称天港)。我们考虑设计空中出租车进入机场的天港地点,我们把天空港地点问题视为一个经修改的单价单合体中位位置问题,将受选择限制的用户模式选择行为纳入决策进程。我们的方法侧重于两个替代目标,即最大限度地增加空中出租车驾驶和空中出租车收入。研究中的拟议模式包括基于旅行者模式选择行为来选择旅行时间和旅行费用之间的权衡,以确定城市机场机场的最佳选择。我们根据两个目标、三个空中出租车定价战略和天空港不同转移时间来审查空中港口地点的敏感性。对149个出租车区和3个机场的个案研究,其中2 000多万个机场的交通旅行数据用于讨论有关选择空中站地点的交通时间间隔和旅行费用之间的权衡。在机场最低机场地点的选择、9个机场的需求量和各种空中地点的需求量之间进行适当的分配。

0
下载
关闭预览

相关内容

清华大学智能产业研究院(AIR)招聘深度强化方向的本科/硕士/博士实习生,主要研究方向侧重前沿 offline RL/multi-agent RL 算法研究及转化落地。团队同时注重与行业头部企业密切协作,赋能相应产业,实现高水平的产学研转化。
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
计算机类 | APNOMS 2019等国际会议信息6条
Call4Papers
4+阅读 · 2019年4月15日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年11月18日
Arxiv
24+阅读 · 2020年3月11日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
计算机类 | APNOMS 2019等国际会议信息6条
Call4Papers
4+阅读 · 2019年4月15日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员