The rapid emergence of pretrained models (PTMs) has attracted significant attention from both Deep Learning (DL) researchers and downstream application developers. However, selecting appropriate PTMs remains challenging because existing methods typically rely on keyword-based searches in which the keywords are often derived directly from function descriptions. This often fails to fully capture user intent and makes it difficult to identify suitable models when developers also consider factors such as bias mitigation, hardware requirements, or license compliance. To address the limitations of keyword-based model search, we propose PTMPicker to accurately identify suitable PTMs. We first define a structured template composed of common and essential attributes for PTMs and then PTMPicker represents both candidate models and user-intended features (i.e., model search requests) in this unified format. To determine whether candidate models satisfy user requirements, it computes embedding similarities for function-related attributes and uses well-crafted prompts to evaluate special constraints such as license compliance and hardware requirements. We scraped a total of 543,949 pretrained models from Hugging Face to prepare valid candidates for selection. PTMPicker then represented them in the predefined structured format by extracting their associated descriptions. Guided by the extracted metadata, we synthesized a total of 15,207 model search requests with carefully designed prompts, as no such search requests are readily available. Experiments on the curated PTM dataset and the synthesized model search requests show that PTMPicker can help users effectively identify models,with 85% of the sampled requests successfully locating appropriate PTMs within the top-10 ranked candidates.


翻译:预训练模型(PTMs)的快速涌现已引起深度学习(DL)研究者和下游应用开发者的广泛关注。然而,选择合适的预训练模型仍然具有挑战性,因为现有方法通常依赖于基于关键词的搜索,而这些关键词往往直接来自功能描述。这常常无法充分捕捉用户意图,并且当开发者还需考虑偏差缓解、硬件要求或许可证合规性等因素时,难以识别合适的模型。为克服基于关键词的模型搜索的局限性,我们提出PTMPicker以精准识别合适的预训练模型。我们首先定义了一个由预训练模型的通用及核心属性组成的结构化模板,随后PTMPicker将候选模型和用户期望特征(即模型搜索请求)均以此统一格式表示。为判断候选模型是否满足用户需求,该方法计算功能相关属性的嵌入相似度,并利用精心设计的提示词来评估许可证合规性和硬件要求等特殊约束。我们从Hugging Face平台共爬取了543,949个预训练模型作为有效候选集。PTMPicker通过提取相关描述,将这些模型以预定义的结构化格式进行表示。在提取的元数据指导下,我们合成了总计15,207个模型搜索请求(采用精心设计的提示词),因为目前尚无此类现成的搜索请求可用。在精心整理的预训练模型数据集和合成的模型搜索请求上进行的实验表明,PTMPicker能有效帮助用户识别模型,在抽样请求中,85%的请求能在排名前10的候选模型中成功定位到合适的预训练模型。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2019年4月4日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员