A common approach to the provably stable design of reactive behavior, exemplified by operational space control, is to reduce the problem to the design of virtual classical mechanical systems (energy shaping). This framework is widely used, and through it we gain stability, but at the price of expressivity. This work presents a comprehensive theoretical framework expanding this approach showing that there is a much larger class of differential equations generalizing classical mechanical systems (and the broader class of Lagrangian systems) and greatly expanding their expressivity while maintaining the same governing stability principles. At the core of our framework is a class of differential equations we call fabrics which constitute a behavioral medium across which we can optimize a potential function. These fabrics shape the system's behavior during optimization but still always provably converge to a local minimum, making them a building block of stable behavioral design. We build the theoretical foundations of our framework here and provide a simple empirical demonstration of a practical class of geometric fabrics, which additionally exhibit a natural geometric path consistency making them convenient for flexible and intuitive behavioral design.


翻译:以操作空间控制为例,一个共同的应对反应行为稳定设计的办法是将问题降低到虚拟古典机械系统的设计(能源成型)中。这个框架被广泛使用,通过它我们获得了稳定性,但以表达性为代价。这个工作提出了一个全面理论框架,扩展了这一方法,表明存在着一个大得多的差别方程式,将古典机械系统(和更广泛的拉格朗江系统)加以概括,并大大扩展其表达性,同时保持同样的管理稳定性原则。我们框架的核心是一类差异方程式,我们称之为构成一种行为介质,我们可以优化一个潜在功能。这些方程式在优化过程中塑造了系统的行为,但始终可以被看似集中到一个当地的最低值,使系统成为稳定的行为设计的一个基石。我们在这里构建了我们框架的理论基础,并为实用的几何结构类别提供了简单的实验性演示,它还展示了自然几何路径的一致性,从而方便灵活和直观的行为设计。

0
下载
关闭预览

相关内容

【CHI2021】可解释人工智能导论
专知会员服务
119+阅读 · 2021年5月25日
专知会员服务
25+阅读 · 2021年4月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
VIP会员
相关VIP内容
【CHI2021】可解释人工智能导论
专知会员服务
119+阅读 · 2021年5月25日
专知会员服务
25+阅读 · 2021年4月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员