A common approach to the provably stable design of reactive behavior, exemplified by operational space control, is to reduce the problem to the design of virtual classical mechanical systems (energy shaping). This framework is widely used, and through it we gain stability, but at the price of expressivity. This work presents a comprehensive theoretical framework expanding this approach showing that there is a much larger class of differential equations generalizing classical mechanical systems (and the broader class of Lagrangian systems) and greatly expanding their expressivity while maintaining the same governing stability principles. At the core of our framework is a class of differential equations we call fabrics which constitute a behavioral medium across which we can optimize a potential function. These fabrics shape the system's behavior during optimization but still always provably converge to a local minimum, making them a building block of stable behavioral design. We build the theoretical foundations of our framework here and provide a simple empirical demonstration of a practical class of geometric fabrics, which additionally exhibit a natural geometric path consistency making them convenient for flexible and intuitive behavioral design.
翻译:以操作空间控制为例,一个共同的应对反应行为稳定设计的办法是将问题降低到虚拟古典机械系统的设计(能源成型)中。这个框架被广泛使用,通过它我们获得了稳定性,但以表达性为代价。这个工作提出了一个全面理论框架,扩展了这一方法,表明存在着一个大得多的差别方程式,将古典机械系统(和更广泛的拉格朗江系统)加以概括,并大大扩展其表达性,同时保持同样的管理稳定性原则。我们框架的核心是一类差异方程式,我们称之为构成一种行为介质,我们可以优化一个潜在功能。这些方程式在优化过程中塑造了系统的行为,但始终可以被看似集中到一个当地的最低值,使系统成为稳定的行为设计的一个基石。我们在这里构建了我们框架的理论基础,并为实用的几何结构类别提供了简单的实验性演示,它还展示了自然几何路径的一致性,从而方便灵活和直观的行为设计。