Deploying emotion recognition systems in real-world environments where devices must be small, low-power, and private remains a significant challenge. This is especially relevant for applications such as tension monitoring, conflict de-escalation, and responsive wearables, where cloud-based solutions are impractical. Multimodal emotion recognition has advanced through deep learning, but most systems remain unsuitable for deployment on ultra-constrained edge devices. Prior work typically relies on powerful hardware, lacks real-time performance, or uses unimodal input. This paper addresses that gap by presenting a hardware-aware emotion recognition system that combines acoustic and linguistic features using a late-fusion architecture optimised for Edge TPU. The design integrates a quantised transformer-based acoustic model with frozen keyword embeddings from a DSResNet-SE network, enabling real-time inference within a 1.8MB memory budget and 21-23ms latency. The pipeline ensures spectrogram alignment between training and deployment using MicroFrontend and MLTK. Evaluation on re-recorded, segmented IEMOCAP samples captured through the Coral Dev Board Micro microphone shows a 6.3% macro F1 improvement over unimodal baselines. This work demonstrates that accurate, real-time multimodal emotion inference is achievable on microcontroller-class edge platforms through task-specific fusion and hardware-guided model design.
翻译:暂无翻译