Software products have become an integral part of human lives, and therefore need to account for human values such as privacy, fairness, and equality. Ignoring human values in software development leads to biases and violations of human values: racial biases in recidivism assessment and facial recognition software are well-known examples of such issues. One of the most critical steps in software development is Software Release Planning (SRP), where decisions are made about the presence or absence of the requirements (features) in the software. Such decisions are primarily guided by the economic value of the requirements, ignoring their impacts on a broader range of human values. That may result in ignoring (selecting) requirements that positively (negatively) impact human values, increasing the risk of value breaches in the software. To address this, we have proposed an Integer Programming approach to considering human values in software release planning. In this regard, an Integer Linear Programming (ILP) model has been proposed, that explicitly accounts for human values in finding an "optimal" subset of the requirements. The ILP model exploits the algebraic structure of fuzzy graphs to capture dependencies and conflicts among the values of the requirements.


翻译:软件产品已成为人类生活的一个组成部分,因此需要考虑到隐私、公正和平等等人类价值观,软件开发中无视人类价值观会导致偏见和违反人类价值观:累犯评估和面部识别软件中的种族偏见是这类问题众所周知的例子。软件开发中最重要的步骤之一是软件释放规划(SRP),在软件释放规划(SSRP)中就软件要求(性能)的存在与否作出决定,这些决定主要以需求的经济价值为指南,忽视其对更广泛的人类价值观的影响。这可能导致忽视(选择)积极(消极)影响人类价值观的要求,增加软件价值破坏的风险。为解决这一问题,我们提出了在软件释放规划中考虑人类价值观的Integer规划方法。在这方面,提出了Integer线性规划模式,明确说明人类价值观在寻找需求中的“最佳”部分。ILP模型利用了模糊图表的代数结构来测定可靠性和冲突。

0
下载
关闭预览

相关内容

归纳逻辑程序设计(ILP)是机器学习的一个分支,它依赖于逻辑程序作为一种统一的表示语言来表达例子、背景知识和假设。基于一阶逻辑的ILP具有很强的表示形式,为多关系学习和数据挖掘提供了一种很好的方法。International Conference on Inductive Logic Programming系列始于1991年,是学习结构化或半结构化关系数据的首要国际论坛。最初专注于逻辑程序的归纳,多年来,它大大扩展了研究范围,并欢迎在逻辑学习、多关系数据挖掘、统计关系学习、图形和树挖掘等各个方面作出贡献,学习其他(非命题)基于逻辑的知识表示框架,探索统计学习和其他概率方法的交叉点。官网链接:https://ilp2019.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
还在修改博士论文?这份《博士论文写作技巧》为你指南
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
已删除
架构文摘
3+阅读 · 2019年4月17日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Model-based clustering of partial records
Arxiv
0+阅读 · 2021年3月30日
Arxiv
0+阅读 · 2021年3月26日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
还在修改博士论文?这份《博士论文写作技巧》为你指南
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
已删除
架构文摘
3+阅读 · 2019年4月17日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员