Quantum computers can produce a quantum encoding of the solution of a system of differential equations exponentially faster than a classical algorithm can produce an explicit description. However, while high-precision quantum algorithms for linear ordinary differential equations are well established, the best previous quantum algorithms for linear partial differential equations (PDEs) have complexity $\mathrm{poly}(1/\epsilon)$, where $\epsilon$ is the error tolerance. By developing quantum algorithms based on adaptive-order finite difference methods and spectral methods, we improve the complexity of quantum algorithms for linear PDEs to be $\mathrm{poly}(d, \log(1/\epsilon))$, where $d$ is the spatial dimension. Our algorithms apply high-precision quantum linear system algorithms to systems whose condition numbers and approximation errors we bound. We develop a finite difference algorithm for the Poisson equation and a spectral algorithm for more general second-order elliptic equations.
翻译:量子计算机可以产生一个差异方程式溶液的量子编码,其速度比古典算法速度快得多,可以产生清晰的描述。然而,虽然线性普通差异方程式的高精度量子算法已经确立,但线性部分差异方程式(PDEs)以前的最好的量子算法具有复杂性$\mathrm{poly}(1/\epsilon)$,其中美元为误差容忍度。通过开发基于适应性-顺序有限差异方法和光谱方法的量子算法,我们提高了线性PDE的量子算法的复杂性,使之达到$\mathrm{poly}(d,\log(1/\epsilon))$,其中美元为空间维度。我们的算法将高精度量量线性系统算法应用于条件数和近似差错被我们约束的系统。我们为Poisson方程式开发了一定的差算法,为更普通的二等离子方程式开发光谱算法。