The scientific community increasingly relies on open data sharing, yet existing metrics inadequately capture the true impact of datasets as research outputs. Traditional measures, such as the h-index, focus on publications and citations but fail to account for dataset accessibility, reuse, and cross-disciplinary influence. We propose the X-index, a novel author-level metric that quantifies the value of data contributions through a two-step process: (i) computing a dataset-level value score (V-score) that integrates breadth of reuse, FAIRness, citation impact, and transitive reuse depth, and (ii) aggregating V-scores into an author-level X-index. Using datasets from computational social science, medicine, and crisis communication, we validate our approach against expert ratings, achieving a strong correlation. Our results demonstrate that the X-index provides a transparent, scalable, and low-cost framework for assessing data-sharing practices and incentivizing open science. The X-index encourages sustainable data-sharing practices and gives institutions, funders, and platforms a tangible way to acknowledge the lasting influence of research datasets.
翻译:科学界日益依赖开放数据共享,然而现有指标未能充分捕捉数据集作为研究成果的真实影响力。传统度量方法(如h指数)聚焦于出版物与引用次数,却未能考量数据集的可访问性、重用性及跨学科影响。我们提出X指数,一种新颖的作者层级度量指标,通过两步流程量化数据贡献的价值:(i)计算数据集层级价值分数(V分数),该分数整合了重用广度、FAIR原则符合度、引用影响力及传递性重用深度;(ii)将V分数聚合为作者层级的X指数。通过使用计算社会科学、医学与危机传播领域的数据集,我们以专家评分为基准验证了该方法,并实现了强相关性。研究结果表明,X指数为评估数据共享实践与激励开放科学提供了透明、可扩展且低成本的框架。该指标鼓励可持续的数据共享实践,并为机构、资助方与平台提供了认可研究数据集持久影响力的具体途径。