We present a new fast Chase decoding algorithm for binary BCH codes. The new algorithm reduces the complexity in comparison to a recent fast Chase decoding algorithm for Reed--Solomon (RS) codes by the authors (IEEE Trans. IT, 2022), by requiring only a single Koetter iteration per edge of the decoding tree. In comparison to the fast Chase algorithms presented by Kamiya (IEEE Trans. IT, 2001) and Wu (IEEE Trans. IT, 2012) for binary BCH codes, the polynomials updated throughout the algorithm of the current paper typically have a much lower degree. To achieve the complexity reduction, we build on a new isomorphism between two solution modules in the binary case, and on a degenerate case of the soft-decision (SD) version of the Wu list decoding algorithm. Roughly speaking, we prove that when the maximum list size is $1$ in Wu list decoding of binary BCH codes, assigning a multiplicity of $1$ to a coordinate has the same effect as flipping this coordinate in a Chase-decoding trial. The solution-module isomorphism also provides a systematic way to benefit from the binary alphabet for reducing the complexity in bounded-distance hard-decision (HD) decoding. Along the way, we briefly develop the Groebner-bases formulation of the Wu list decoding algorithm for binary BCH codes, which is missing in the literature.
翻译:我们为二进制 BCH 代码提供了一个新的快速大通解码算法。 新的算法降低了与作者最近为 Reed- Solomon (RS) 代码快速大通解码算法相比的复杂性( IEEEE Trans. IT, 2022), 只需对解码树边緣进行单一的 Ketter 迭代。 与Kamiya ( IEEEE Trans. IT, 2001) 和 Wu ( IEEEEE Trans. Trans. IT, 2012) 为二进制 BCH 代码提供的快速大通算法相比, 在当前纸张的算法中更新的多义通常要低得多得多。 为了实现简化复杂性,我们将在二进制解码案的两个解决方案模块和软决定版本(SDD) 解码算法之间建立起新的异体主义。 粗略地说, 当最大名单的大小为1美元时, 将一美元加码加到一个协调, 其效果与在正解码中将这一协调翻转成一个协调, 在正分解的文本的文档中进行分解码试验中, 我们的版本的版本的版本的版本的版本的版本的版本的版本的版本的版本的版本的版本的版本的版本的版本的版本的版本的版本也提供了的版本化的版本的版本化的版本化的版本的版本的版本的版本化的版本化的版本化的版本化了。