Reading text in the wild is a very challenging task due to the diversity of text instances and the complexity of natural scenes. Recently, the community has paid increasing attention to the problem of recognizing text instances with irregular shapes. One intuitive and effective way to handle this problem is to rectify irregular text to a canonical form before recognition. However, these methods might struggle when dealing with highly curved or distorted text instances. To tackle this issue, we propose in this paper a Symmetry-constrained Rectification Network (ScRN) based on local attributes of text instances, such as center line, scale and orientation. Such constraints with an accurate description of text shape enable ScRN to generate better rectification results than existing methods and thus lead to higher recognition accuracy. Our method achieves state-of-the-art performance on text with both regular and irregular shapes. Specifically, the system outperforms existing algorithms by a large margin on datasets that contain quite a proportion of irregular text instances, e.g., ICDAR 2015, SVT-Perspective and CUTE80.
翻译:野外阅读文本是一项非常艰巨的任务, 原因是文本实例的多样性和自然场景的复杂性。 最近, 社区日益关注识别非正常形状文本实例的问题。 解决这一问题的一种直观而有效的方法是将非正常文本纠正成一种在承认之前的卡通形式。 然而, 这些方法在处理高度曲线化或扭曲的文本实例时可能会很困难。 为了解决这一问题, 我们在本文件中提议基于文本实例( 如中线、 比例和方向) 的本地属性建立一个由对称限制的校正网络( ScRN ) 。 这种对文本形状进行准确描述的制约使 ScRN 能够产生比现有方法更好的校正结果, 从而导致更高的准确度。 我们的方法在文本上实现常规和非常规形状的最新性表现。 具体地说, 系统在包含相当比例的不规范文本实例的数据集上, 例如 ICDAR 2015 、 SVT-Perpepect 和 CUTE80 上, 大大超出现有的算法。