Support constrained generator matrices for linear codes have been found applications in multiple access networks and weakly secure document exchange. The necessary and sufficient conditions for the existence of Reed-Solomon codes with support constrained generator matrices were conjectured by Dau, Song, Yuen and Hassibi. This conjecture is called the GM-MDS conjecture and finally proved recently in independent works of Lovett and Yildiz-Hassibi. From their conjecture support constrained generator matrices for MDS codes are existent over linear size small fields. In this paper we propose a natural generalized conjecture for the support constrained matrices based on the generalized Hamming weights (SCGM-GHW conjecture). The GM-MDS conjecture can be thought as a very special case of our SCGM-GHW conjecture for linear $1$-MDS codes. We investigate the support constrained generator matrices for some linear codes such as $2$-MDS codes, first order Reed-Muller codes, algebraic-geometric codes from elliptic curves from the view of our SCGM-GHW conjecture. In particular the direct generalization of the GM-MDS conjecture about $1$-MDS codes to $2$-MDS codes is not true. For linear $2$-MDS codes only cardinality-based constraints on subset systems are not sufficient for the purpose that these subsets are in the zero coordinate position sets of rows in generator matrices.


翻译:对线性代码的支持受限发电机矩阵已在许多存取网络和安全性文件交换中找到,对线性代码的支持受限发电机矩阵的应用为多个存取网络和安全性小域所发现。支持受限发电机矩阵的必要和充分条件由Dau、Song、Yuen和Hassibi所推测。这一假设称为GM-MDS的推测,最近在Lovett和Yildiz-Hassibi的独立著作中被证实。从他们的推测性支持受限的MDS代码的生成矩阵存在于线性大小小域中。在本文中,我们提议基于普遍含重重量(SCGM-GHW的预测)的支持受限矩阵的自然通用预测值。GMS的预测值被认为是我们SGM-GHW对线性代码的非常特殊的例子。我们调查了某些线性代码(例如$MDS的代码)的受限源性支持,从Reed-Murrer 代码的第一顺序,从我们GM-GM-G-G-G-G-G-GM-GM-C的直径定位定位定位定位定位定位定位定位定位定位定位定位定位定位定位定位定位,而不是在IM-GMD-GMD-S-GMD-S-Q-Q-Q-Q-C-C-Q-Q-Q-Q-C-C-C-C-C-C-Q-Q-Q-GMD-GMD-GMD-Q-Q-Q-Q-Q-Q-Q-Q-GMD-GMD-Q-GMDMD-Q-Q-Q-Q-Q-Q-Q-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-IDMDMDMD-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C

0
下载
关闭预览

相关内容

专知会员服务
23+阅读 · 2021年9月20日
专知会员服务
77+阅读 · 2021年3月16日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
Transformer文本分类代码
专知会员服务
117+阅读 · 2020年2月3日
【干货】用BRET进行多标签文本分类(附代码)
专知会员服务
85+阅读 · 2019年12月27日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
已删除
将门创投
7+阅读 · 2018年4月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月25日
Arxiv
9+阅读 · 2021年6月21日
Question Generation by Transformers
Arxiv
5+阅读 · 2019年9月14日
VIP会员
相关VIP内容
专知会员服务
23+阅读 · 2021年9月20日
专知会员服务
77+阅读 · 2021年3月16日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
Transformer文本分类代码
专知会员服务
117+阅读 · 2020年2月3日
【干货】用BRET进行多标签文本分类(附代码)
专知会员服务
85+阅读 · 2019年12月27日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
已删除
将门创投
7+阅读 · 2018年4月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员