There is a growing awareness of the important roles that microbial communities play in complex biological processes. Modern investigation of these often uses next generation sequencing of metagenomic samples to determine community composition. We propose a statistical technique based on clique loglinear models and Bayes model averaging to identify microbial components in a metagenomic sample at various taxonomic levels that have significant associations. We describe the model class, a stochastic search technique for model selection, and the calculation of estimates of posterior probabilities of interest. We demonstrate our approach using data from the Human Microbiome Project and from a study of the skin microbiome in chronic wound healing. Our technique also identifies significant dependencies among microbial components as evidence of possible microbial syntrophy. KEYWORDS: contingency tables, graphical models, model selection, microbiome, next generation sequencing
翻译:人们日益认识到微生物社区在复杂的生物过程中所起的重要作用。对这些微生物社区进行现代调查时,往往使用新一代的代代代代代代代代代代代代代代代代代代代代代代代代代代代代代代代代代代代代代代代代代代代代代代代谢样本中,在具有重要联系的不同分类层,我们建议采用基于分类线模型和贝亚斯模型的统计技术,平均地在代代代代代代代代代代谢样本中确定微生物成分的微生物成分,以证明可能的微生物合成营养。我们描述了模型类、模型选择的随机搜索技术,以及后代概率的计算。我们利用人类微生物项目和慢性创伤中皮肤微生物细胞研究的数据,展示了我们的方法。我们的技术还确定了微生物组成部分之间重要的依赖性,以证明可能的微生物合成营养。KEYWORDS:应急表、图形模型选择、模型选择、微生物、下一代序列。