Unsupervised domain adaptation (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain. Prior UDA methods typically require to access the source data when learning to adapt the model, making them risky and inefficient for decentralized private data. This work tackles a practical setting where only a trained source model is available and investigates how we can effectively utilize such a model without source data to solve UDA problems. We propose a simple yet generic representation learning framework, named \emph{Source HypOthesis Transfer} (SHOT). SHOT freezes the classifier module (hypothesis) of the source model and learns the target-specific feature extraction module by exploiting both information maximization and self-supervised pseudo-labeling to implicitly align representations from the target domains to the source hypothesis. To verify its versatility, we evaluate SHOT in a variety of adaptation cases including closed-set, partial-set, and open-set domain adaptation. Experiments indicate that SHOT yields state-of-the-art results among multiple domain adaptation benchmarks.


翻译:未受监督的域适应(UDA)旨在利用从标签源数据集获得的知识,解决在新的未加标记域域中类似任务。前UDA方法通常要求在学习调整模型时获取源数据,使分散的私人数据具有风险和效率。这项工作解决了只有经过培训的源模型的实用环境,并调查我们如何能够在没有源数据的情况下有效利用这种模型解决UDA问题。我们提议了一个简单但通用的代议学习框架,名为\emph{源 HypOthissis Transad}(SHOT)。SHOT冻结源模型的分类模块(Hypothesis),并通过利用信息最大化和自我监督的伪标签,将目标区域表与源的假设隐含地统一起来,学习特定特性提取模块。为了核实其多功能性,我们评估SHOT在各种适应案例中,包括封闭设置、部分设置和开放域适应。实验表明SHOT在多个域适应基准中产生状态结果。

0
下载
关闭预览

相关内容

移动数字广告与互联网反欺诈蓝皮报告
专知会员服务
26+阅读 · 2021年5月13日
智慧城市白皮书(2021年)
专知会员服务
177+阅读 · 2021年4月24日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
“CVPR 2020 接受论文列表 1470篇论文都在这了
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Arxiv
13+阅读 · 2021年3月29日
Arxiv
5+阅读 · 2020年3月17日
VIP会员
相关VIP内容
移动数字广告与互联网反欺诈蓝皮报告
专知会员服务
26+阅读 · 2021年5月13日
智慧城市白皮书(2021年)
专知会员服务
177+阅读 · 2021年4月24日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Top
微信扫码咨询专知VIP会员