Next-generation wireless services are characterized by a diverse set of requirements, to sustain which, the wireless access points need to probe the users in the network periodically. In this regard, we study a novel multi-armed bandit (MAB) setting that mandates probing all the arms periodically while keeping track of the best current arm in a non-stationary environment. In particular, we develop \texttt{TS-GE} that balances the regret guarantees of classical Thompson sampling (TS) with the broadcast probing (BP) of all the arms simultaneously in order to actively detect a change in the reward distributions. The main innovation in the algorithm is in identifying the changed arm by an optional subroutine called group exploration (GE) that scales as $\log_2(K)$ for a $K-$armed bandit setting. We characterize the probability of missed detection and the probability of false-alarm in terms of the environment parameters. We highlight the conditions in which the regret guarantee of \texttt{TS-GE} outperforms that of the state-of-the-art algorithms, in particular, \texttt{ADSWITCH} and \texttt{M-UCB}. We demonstrate the efficacy of \texttt{TS-GE} by employing it in two wireless system application - task offloading in mobile-edge computing (MEC) and an industrial internet-of-things (IIoT) network designed for simultaneous wireless information and power transfer (SWIPT).


翻译:下一代无线服务的特征是一系列不同的要求,为了维持这些要求,无线接入点需要定期对网络用户进行检测。 在这方面,我们研究一个新的多武装匪帮(MAB)设置新颖的多武装匪帮(MAB),规定定期对所有军火进行检测,同时在非静止环境中跟踪最佳电臂。特别是,我们开发了\textt{TS-GE},以平衡古典汤普森取样(TS)的遗憾保证与所有军火的广播检测(BP)之间的平衡,以便积极检测奖励分布的变异。 算法的主要创新是用一个称为“GE”的可选子例(GE)来测量所有军火的定期检测,同时在非静止环境中跟踪最佳电臂。我们用环境参数来描述错测的可能性和假电臂的概率。 我们突出了传统汤普采样(Textt{TS-GEG)的遗憾保证优于最新电量运算法的精确度分布。 特别是,Streal-TS-TS-troal-treal-tal-traction_T-TLU_TU_S-S-T-T_T_TLULU_S-T_S-T-T-T-T-S-S-TH} 和TUTUTUDS-S-S-S-S-T-T-S-TUBS-S-S-S-S-S-S-TUT-T-T-T-S-S-S-S-TLUTLTLT-S-S-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-TL-TL-TL-TL-S-TL-TL-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月27日
Arxiv
0+阅读 · 2023年1月26日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员