Vision Transformers (ViTs) have established new performance benchmarks in vision tasks such as image recognition and object detection. However, these advancements come with significant demands for memory and computational resources, presenting challenges for hardware deployment. Heterogeneous compute-in-memory (CIM) accelerators have emerged as a promising solution for enabling energy-efficient deployment of ViTs. Despite this potential, monolithic CIM-based designs face scalability issues due to the size limitations of a single chip. To address this challenge, emerging chiplet-based techniques offer a more scalable alternative. However, chiplet designs come with their own costs, as they introduce more expensive communication through the network-on-package (NoP) compared to the network-on-chip (NoC), which can hinder improvements in throughput. This work introduces Hemlet, a heterogeneous CIM chiplet system designed to accelerate ViT. Hemlet facilitates flexible resource scaling through the integration of heterogeneous analog CIM (ACIM), digital CIM (DCIM), and Intermediate Data Process (IDP) chiplets. To improve throughput while reducing communication ove


翻译:视觉Transformer(ViT)已在图像识别和物体检测等视觉任务中确立了新的性能基准。然而,这些进展伴随着对内存和计算资源的巨大需求,给硬件部署带来了挑战。异构存内计算(CIM)加速器已成为实现ViT能效部署的一种有前景的解决方案。尽管具有潜力,但基于单片CIM的设计因单芯片尺寸限制而面临可扩展性问题。为应对这一挑战,新兴的小芯片技术提供了一种更具可扩展性的替代方案。然而,小芯片设计本身也存在成本问题,因为与片上网络(NoC)相比,它们通过封装内网络(NoP)引入了更昂贵的通信,这可能阻碍吞吐量的提升。本研究提出了Hemlet,一种专为加速ViT设计的异构CIM小芯片系统。Hemlet通过集成异构模拟CIM(ACIM)、数字CIM(DCIM)和中间数据处理(IDP)小芯片,实现了灵活的资源扩展。该系统旨在提升吞吐量,同时减少通信开销。

0
下载
关闭预览

相关内容

半导体是一类材料的总称,集成电路是用半导体材料制成的电路的大型集合,芯片是由不同种类型的集成电路或者单一类型集成电路形成的产品。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员