The primary outcome of Randomized clinical Trials (RCTs) are typically dichotomous, continuous, multivariate continuous, or time-to-event. However, what if this outcome is unstructured, e.g., a list of variables of mixed types, longitudinal sequences, images, audio recordings, etc. When the outcome is unstructured it is unclear how to assess RCT success and how to compute sample size. We show that kernel methods offer natural extensions to traditional biostatistics methods. We demonstrate our approach with the measurements of computer usage in a cohort of aging participants, some of which will become cognitively impaired. Simulations as well as a real data experiment show the superiority of the proposed approach compared to the standard in this situation: generalized mixed effect models.
翻译:随机临床试验的主要结果通常是二分位、连续、多变、连续或时间到活动。然而,如果这一结果没有结构化,例如混合类型、纵向序列、图像、录音等变量清单。当结果不结构化时,还不清楚如何评估转基因试验的成功程度和如何计算样本大小。我们显示内核方法为传统的生物统计方法提供了自然延伸。我们展示了我们在一组老化参与者中测量计算机使用情况的方法,其中一些人将受到认知上的损害。模拟和真实的数据实验显示了拟议方法相对于目前情况下的标准的优越性:普遍混合效应模型。