In this paper, we study the data complexity of querying inconsistent weighted description logic (DL) knowledge bases under recently-introduced cost-based semantics. In a nutshell, the idea is to assign each interpretation a cost based upon the weights of the violated axioms and assertions, and certain and possible query answers are determined by considering all (resp. some) interpretations having optimal or bounded cost. Whereas the initial study of cost-based semantics focused on DLs between $\mathcal{EL}_\bot$ and $\mathcal{ALCO}$, we consider DLs that may contain inverse roles and role inclusions, thus covering prominent DL-Lite dialects. Our data complexity analysis goes significantly beyond existing results by sharpening several lower bounds and pinpointing the precise complexity of optimal-cost certain answer semantics (no non-trivial upper bound was known). Moreover, while all existing results show the intractability of cost-based semantics, our most challenging and surprising result establishes that if we consider $\text{DL-Lite}^\mathcal{H}_\mathsf{bool}$ ontologies and a fixed cost bound, certain answers for instance queries and possible answers for conjunctive queries can be computed using first-order rewriting and thus enjoy the lowest possible data complexity ($\mathsf{TC}_0$).


翻译:本文研究了在最近提出的基于成本的语义下,查询不一致加权描述逻辑(DL)知识库的数据复杂性。简而言之,该语义的基本思想是根据违反的公理和断言所对应的权重为每个解释分配成本,而确定查询答案(必然答案与可能答案)则通过考虑所有(或部分)具有最优或有限成本的解释来实现。尽管先前对基于成本语义的研究主要关注介于$\\mathcal{EL}_\\bot$与$\\mathcal{ALCO}$之间的描述逻辑,本文则考虑了可能包含逆角色和角色包含的描述逻辑,从而涵盖了重要的DL-Lite变体。我们的数据复杂性分析显著超越了现有结果:一方面强化了若干下界,另一方面精确刻画了最优成本必然答案语义的复杂度(此前尚未知非平凡上界)。此外,尽管现有研究均表明基于成本语义具有难解性,我们最具挑战性且令人惊讶的结果证明:若考虑$\\text{DL-Lite}^\\mathcal{H}_\\mathsf{bool}$本体与固定成本边界,实例查询的必然答案与合取查询的可能答案可通过一阶重写计算,从而享有最低可能的数据复杂度($\\mathsf{TC}_0$)。

0
下载
关闭预览

相关内容

描述逻辑(DescriptionLogic)是基于对象的知识表示的形式化,它吸取了KL-ONE的主要思想,是一阶谓词逻辑的一个可判定子集。除了知识表示以外,描述逻辑还用在其它许多领域,它被认为是以对象为中心的表示语言的最为重要的归一形式。描述逻辑的重要特征是很强的表达能力和可判定性,它能保证推理算法总能停止,并返回正确的结果。在众多知识表示的形式化方法中,描述逻辑在十多年来受到人们的特别关注,主要原因在于:它们有清晰的模型-理论机制;很适合于通过概念分类学来表示应用领域;并提供了很多有用的推理服务。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员