In this paper, we study the data complexity of querying inconsistent weighted description logic (DL) knowledge bases under recently-introduced cost-based semantics. In a nutshell, the idea is to assign each interpretation a cost based upon the weights of the violated axioms and assertions, and certain and possible query answers are determined by considering all (resp. some) interpretations having optimal or bounded cost. Whereas the initial study of cost-based semantics focused on DLs between $\mathcal{EL}_\bot$ and $\mathcal{ALCO}$, we consider DLs that may contain inverse roles and role inclusions, thus covering prominent DL-Lite dialects. Our data complexity analysis goes significantly beyond existing results by sharpening several lower bounds and pinpointing the precise complexity of optimal-cost certain answer semantics (no non-trivial upper bound was known). Moreover, while all existing results show the intractability of cost-based semantics, our most challenging and surprising result establishes that if we consider $\text{DL-Lite}^\mathcal{H}_\mathsf{bool}$ ontologies and a fixed cost bound, certain answers for instance queries and possible answers for conjunctive queries can be computed using first-order rewriting and thus enjoy the lowest possible data complexity ($\mathsf{TC}_0$).
翻译:本文研究了在最近提出的基于成本的语义下,查询不一致加权描述逻辑(DL)知识库的数据复杂性。简而言之,该语义的基本思想是根据违反的公理和断言所对应的权重为每个解释分配成本,而确定查询答案(必然答案与可能答案)则通过考虑所有(或部分)具有最优或有限成本的解释来实现。尽管先前对基于成本语义的研究主要关注介于$\\mathcal{EL}_\\bot$与$\\mathcal{ALCO}$之间的描述逻辑,本文则考虑了可能包含逆角色和角色包含的描述逻辑,从而涵盖了重要的DL-Lite变体。我们的数据复杂性分析显著超越了现有结果:一方面强化了若干下界,另一方面精确刻画了最优成本必然答案语义的复杂度(此前尚未知非平凡上界)。此外,尽管现有研究均表明基于成本语义具有难解性,我们最具挑战性且令人惊讶的结果证明:若考虑$\\text{DL-Lite}^\\mathcal{H}_\\mathsf{bool}$本体与固定成本边界,实例查询的必然答案与合取查询的可能答案可通过一阶重写计算,从而享有最低可能的数据复杂度($\\mathsf{TC}_0$)。