To analyze large sets of grid states, e.g. in time series calculations or parameter studies, large number of power flow calculations have to be performed, as well as evaluating the impact from uncertainties of the renewable energy e.g. wind and PV of power systems with Monte-Carlo simulation. For the application in real-time grid operation and in cases when computational time is critical, a novel approach on parallelization of Newton-Raphson power flow for many calculations on CPU and with GPU-acceleration is proposed. The result shows a speed-up of over x100 comparing to the open-source tool pandapower, when performing repetitive power flows of system with admittance matrix of the same sparsity pattern on both CPU and GPU. The speed-up relies on the optimized algorithm and parallelization strategy, which can reduce the repetitive work and saturate the high hardware performance of modern CPUs and GPUs well. This is achieved with the proposed batched sparse matrix operation and batched linear solver based on LU-refactorization. The batched linear solver shows a large performance improvement comparing to the state-of-art linear system solver KLU library and a better saturation of the GPU performance with small problem scale. Finally, the method of integrating the proposed solver into pandapower is presented, thus the parallel power flow solver with outstanding performance can be easily applied in challenging real-life grid operation and innovative researches e.g. data-driven machine learning studies.
翻译:为了分析大量的电网状态,例如,在时间序列计算或参数研究中,必须进行大量的电流计算,并评价可再生能源的不确定性的影响,例如风和电源系统的光伏,以及蒙特-卡洛模拟。对于实时电网操作的应用,以及在计算时间十分关键的情况下,提议对牛顿-拉夫森电源流动进行新颖的平行化方法,在CPU和GPU加速度的许多计算中进行许多计算。结果显示,在使用CPU和GPU的同一宽度模式的接纳矩阵进行系统重复的电流运行时,与开放源工具大容量电流计算的速度加快了x100以上。加速速度取决于实时电网操作的应用,以及在计算时间十分关键的情况下,对牛顿-拉夫森电流流进行平行化的多种计算,提出了一种新颖的方法,即以LU-refacor化为基础的分批化矩阵操作和分批线性电解式电解解器。分解的线性线性求求求化系统在采用一个较具有挑战性性性性性的工作改进,从而将Slod-ral-rallistruallistrual-liallistrisal 递化的系统在Slistrualal-Lislal-L 上,可以将Slical-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I