In the growing field of virtual auditory display, personalized head-related transfer functions (HRTFs) play a vital role in establishing an accurate sound image. In this work, we propose an HRTF personalization method employing convolutional neural networks (CNN) to predict a subject's HRTFs for all directions from their scanned head geometry. To ease the training of the CNN models, we propose novel pre-processing methods for both the head scans and HRTF data to achieve compact representations. For the head scan, we use truncated spherical cap harmonic (SCH) coefficients to represent the pinna area, which is important in the acoustic scattering process. For the HRTF data, we use truncated spherical harmonic (SH) coefficients to represent the HRTF magnitudes and onsets. One CNN model is trained to predict the SH coefficients of the HRTF magnitudes from the SCH coefficients of the scanned ear geometry and other anthropometric measurements of the head. The other CNN model is trained to predict SH coefficients of the HRTF onsets from only the anthropometric measurements of the ear, head, and torso. Combining the magnitude and onset predictions, our method is able to predict the complete and global HRTF data. A leave-one-out validation with the log-spectral distortion (LSD) metric is used for objective evaluation. The results show a decent LSD level at both spatial \& temporal dimensions compared to the ground-truth HRTFs and a lower LSD than the boundary element method (BEM) simulation of HRTFs that the database provides. The localization simulation results with an auditory model are also consistent with the objective evaluation metrics, showing the localization responses with our predicted HRTFs are significantly better than with the BEM calculated ones.


翻译:在不断增长的虚拟听觉显示领域,个性化头部相关传输功能(HRTF)在建立准确的正确图像方面发挥着关键作用。在这项工作中,我们提议了HRTF个性化方法,使用进听神经神经网络(CNN)来预测其扫描头部几何的所有方向。为了便利CNN模型的培训,我们为头部扫描和HRTF数据提出了新的预处理方法,以达到缩略表。在头部扫描中,我们使用直流的流经球口腔口腔调调系数来代表点菜区域,这在听觉散布过程中非常重要。对于HRTF数据,我们使用快速计算球口腔调系数来预测对象的HRTF。一个CNM模型用扫描式耳眼测量和其他头部的光度测量来预测SH系数。另一个CNN模型用来预测 HRTF的 SH系数, 仅用人类心部内位数的内值数据, 也用智能内径端的内存数据, 也用智能内存数据, 向右端的内端数据显示一个更精确的内空数据。

1
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月26日
Arxiv
0+阅读 · 2022年9月23日
Arxiv
14+阅读 · 2021年7月20日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员