Modeling the mechanics of fluid in complex scenes is vital to applications in design, graphics, and robotics. Learning-based methods provide fast and differentiable fluid simulators, however most prior work is unable to accurately model how fluids interact with genuinely novel surfaces not seen during training. We introduce SURFSUP, a framework that represents objects implicitly using signed distance functions (SDFs), rather than an explicit representation of meshes or particles. This continuous representation of geometry enables more accurate simulation of fluid-object interactions over long time periods while simultaneously making computation more efficient. Moreover, SURFSUP trained on simple shape primitives generalizes considerably out-of-distribution, even to complex real-world scenes and objects. Finally, we show we can invert our model to design simple objects to manipulate fluid flow.
翻译:建模复杂场景中流体的力学是设计、图形和机器人应用中至关重要的。基于学习的方法提供了快速且可微分的流体模拟器,但大多数先前的工作无法准确地模拟流体与在训练过程中没有见过的全新表面的相互作用。我们提出SURFSUP,这是一个使用符号距离函数(SDFs)隐式表示对象的框架,而不是通过网格或粒子的显式表示。这种几何的连续表示在长时间段内更准确地模拟流体和物体相互作用,同时使计算更高效。此外,SURFSUP在简单的形状基元上训练出来的模型能够广义地推广到分布外的位置,甚至应用到复杂的现实场景和对象。最后,我们展示了如何反转我们的模型来设计简单的对象来操纵流体流动。