Neuromorphic computing and spiking neural networks aim to leverage biological inspiration to achieve greater energy efficiency and computational power beyond traditional von Neumann architectured machines. In particular, spiking neural networks hold the potential to advance artificial intelligence as the basis of third-generation neural networks. Aided by developments in memristive and compute-in-memory technologies, neuromorphic computing hardware is transitioning from laboratory prototype devices to commercial chipsets; ushering in an era of low-power computing. As a nexus of biological, computing, and material sciences, the literature surrounding these concepts is vast, varied, and somewhat distinct from artificial neural network sources. This article uses bibliometric analysis to survey the last 22 years of literature, seeking to establish trends in publication and citation volumes (III-A); analyze impactful authors, journals and institutions (III-B); generate an introductory reading list (III-C); survey collaborations between countries, institutes and authors (III-D), and to analyze changes in research topics over the years (III-E). We analyze literature data from the Clarivate Web of Science using standard bibliometric methods. By briefly introducing the most impactful literature in this field from the last two decades, we encourage AI practitioners and researchers to look beyond contemporary technologies toward a potentially spiking future of computing.
翻译:神经形态计算和脉冲神经网络旨在借鉴生物灵感,实现超越传统冯诺依曼体系结构机器的更高能效和计算能力。特别是,脉冲神经网络具有推进人工智能成为第三代神经网络基础的潜力。在忆阻器和内存计算技术的发展推动下,神经形态计算硬件正在从实验室原型装置转向商用芯片组,开创低功耗计算的时代。作为一个生物学、计算和材料科学的交错领域,围绕这些概念的文献庞杂、多样,与人工神经网络领域的来源有所区别。本文使用文献计量分析调查了过去22年的文献,旨在确定出版和引用数量的趋势(III-A);分析有影响力的作者、期刊和机构(III-B);生成一个简介性阅读清单(III-C);调查国家、机构和作者之间的合作(III-D);并分析研究主题随时间的变化(III-E)。我们使用标准文献计量方法分析 Clarivate Web of Science 数据。通过简要介绍过去两十年这一领域中最具影响力的文献,我们鼓励人工智能从业者和研究人员放眼于一种可能脉冲的计算未来。