In an undirected graph $G=(V,E)$, we say $(A,B)$ is a pair of perfectly matched sets if $A$ and $B$ are disjoint subsets of $V$ and every vertex in $A$ (resp. $B$) has exactly one neighbor in $B$ (resp. $A$). The size of a pair perfectly matched sets $(A,B)$ is $|A|=|B|$. The PERFECTLY MATCHED SETS problem is to decide whether a given graph $G$ has a pair of perfectly matched sets of size $k$. We show that PMS is $W[1]$-hard when parameterized by solution size $k$ even when restricted to split graphs and bipartite graphs. We give FPT algorithms with respect to the parameters distance to cluster, distance to co-cluster and treewidth. We also provide an exact exponential algorithm running in time $O^*(1.964^n)$.
翻译:在非方向方形$G=(V,E)美元中,我们说$(A,B)是一对完全匹配的套件,如果A美元和B美元是瓦元的脱节子集,那么美元是一对非常匹配的套件,如果美元和B美元是瓦元的分解分解分解分解分解分解分解分解分解分解件,而美元(Rest. $B美元)的每一个顶点完全是一个邻接美元(Rest. $A,B美元),一对完全匹配的(A,B美元)的大小是$A ⁇ B $。完美Matchle Matched SETS的问题在于决定某一张图中$G$是否有一对完全匹配的套件美元大小。我们表明,当按溶解号大小参数参数设定为美元(k美元)时,PMS是[1]美元硬的。我们给出FPT算法的参数距离、距离至联合集群和树线的距离。我们还提供了精确的指数算法,时间为$@(1.964美元)。