Solar energy forecasting has seen tremendous growth in the last decade using historical time series collected from a weather station, such as weather variables wind speed and direction, solar radiance, and temperature. It helps in the overall management of solar power plants. However, the solar power plant regularly requires preventive and corrective maintenance activities that further impact energy production. This paper presents a novel work for forecasting solar power energy production based on maintenance activities, problems observed at a power plant, and weather data. The results accomplished on the datasets obtained from the 1MW solar power plant of PDEU (our university) that has generated data set with 13 columns as daily entries from 2012 to 2020. There are 12 structured columns and one unstructured column with manual text entries about different maintenance activities, problems observed, and weather conditions daily. The unstructured column is used to create a new feature column vector using Hash Map, flag words, and stop words. The final dataset comprises five important feature vector columns based on correlation and causality analysis.
翻译:过去十年来,利用从气象站收集的历史时间序列,如天气变数风速和方向、太阳光亮度和温度,太阳能预测取得了巨大增长,有助于太阳能发电厂的全面管理;然而,太阳能发电厂经常需要预防性和纠正性维护活动,以进一步影响能源生产;本文件介绍了根据维修活动、发电厂所观察到的问题和天气数据预测太阳能能源生产的新工作;从PDEU(我们的大学)的1MW太阳能发电厂获得的数据集取得的成果,该发电厂在2012年至2020年期间生成了13个柱子数据集,从2012年至2020年每日条目为13个柱子;有12个结构化的柱子和1个无结构的柱子,有关于不同维修活动、所观察到的问题和天气条件的手动文字条目;无结构的柱子用于利用Hash地图、旗帜单词和停止单词创建新的特性柱矢量。最后数据集由根据相关和因果关系分析得出的5个重要矢量柱组成。