We consider the problem of controlling a partially-observed dynamic process on a graph by a limited number of interventions. This problem naturally arises in contexts such as scheduling virus tests to curb an epidemic; targeted marketing in order to promote a product; and manually inspecting posts to detect fake news spreading on social networks. We formulate this setup as a sequential decision problem over a temporal graph process. In face of an exponential state space, combinatorial action space and partial observability, we design a novel tractable scheme to control dynamical processes on temporal graphs. We successfully apply our approach to two popular problems that fall into our framework: prioritizing which nodes should be tested in order to curb the spread of an epidemic, and influence maximization on a graph.
翻译:我们考虑用数量有限的干预措施在图表上控制一个部分观测到的动态过程的问题,这个问题自然出现在如下背景下:为遏制流行病而安排病毒试验;为促销产品而有针对性地营销;为检测在社交网络上传播的假消息而人工检查站;我们把这个设置作为一个时间图过程中的顺序决定问题。面对指数空间、组合行动空间和部分可观测性,我们设计了一个新型的可移植计划,以控制时间图上的动态过程。我们成功地将我们的方法应用于我们框架中的两个流行问题:优先选择哪些节点来控制流行病的蔓延,以及影响图的最大化。