Time series prediction underpins a broad range of downstream tasks across many scientific domains. Recent advances and increasing adoption of black-box machine learning models for time series prediction highlight the critical need for reliable uncertainty quantification. While conformal prediction has gained attention as a reliable uncertainty quantification method, conformal prediction for time series faces two key challenges: (1) adaptively leveraging correlations in features and non-conformity scores to overcome the exchangeability assumption, and (2) constructing prediction sets for multi-dimensional outcomes. To address these challenges jointly, we propose a novel conformal prediction method for time series using flow with classifier-free guidance. We provide coverage guarantees by establishing exact non-asymptotic marginal coverage and a finite-sample bound on conditional coverage for the proposed method. Evaluations on real-world time series datasets demonstrate that our method constructs significantly smaller prediction sets than existing conformal prediction methods while maintaining target coverage.


翻译:时间序列预测支撑着众多科学领域中的广泛下游任务。近年来,黑盒机器学习模型在时间序列预测中的进展与日益普及突显了可靠不确定性量化的关键需求。尽管保形预测作为一种可靠的不确定性量化方法已受到关注,但时间序列的保形预测面临两大挑战:(1) 自适应利用特征与非一致性分数间的相关性以克服可交换性假设,(2) 为多维输出构建预测集。为协同解决这些挑战,我们提出了一种基于流与无分类器引导的新型时间序列保形预测方法。通过建立精确的非渐近边际覆盖性及所提方法条件覆盖性的有限样本界,我们提供了覆盖性保证。在真实世界时间序列数据集上的评估表明,本方法在保持目标覆盖率的同时,构建的预测集显著小于现有保形预测方法。

0
下载
关闭预览

相关内容

数学上,序列是被排成一列的对象(或事件);这样每个元素不是在其他元素之前,就是在其他元素之后。这里,元素之间的顺序非常重要。
用于多模态对齐的基础模型表征潜力:一项综述
专知会员服务
18+阅读 · 10月8日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
22+阅读 · 2023年5月10日
专知会员服务
18+阅读 · 2021年7月27日
基于模型的强化学习综述
专知
42+阅读 · 2022年7月13日
Distributional Soft Actor-Critic (DSAC)强化学习算法的设计与验证
深度强化学习实验室
19+阅读 · 2020年8月11日
ICLR 2019 | 基于复杂空间关系旋转的知识表示方法
PaperWeekly
17+阅读 · 2019年7月29日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
国家自然科学基金
23+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 11月30日
Arxiv
0+阅读 · 11月30日
VIP会员
相关资讯
基于模型的强化学习综述
专知
42+阅读 · 2022年7月13日
Distributional Soft Actor-Critic (DSAC)强化学习算法的设计与验证
深度强化学习实验室
19+阅读 · 2020年8月11日
ICLR 2019 | 基于复杂空间关系旋转的知识表示方法
PaperWeekly
17+阅读 · 2019年7月29日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
相关基金
国家自然科学基金
23+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员