The tradeoff between accuracy and speed is considered fundamental to individual and collective decision-making. In this paper, we focus on collective estimation as an example of collective decision-making. The task is to estimate the average scalar intensity of a desired feature in the environment. The solution we propose consists of exploration and exploitation phases, where the switching time is a factor dictating the balance between the two phases. By decomposing the total accuracy into bias and variance, we explain that diversity and social interactions could promote the accuracy of the collective decision. We also show how the exploration-vs-exploitation tradeoff relates to the speed-vs-accuracy tradeoff. One significant finding of our work is that there is an optimal duration for exploration to compromise between speed and accuracy. This duration cannot be determined offline for an unknown environment. Hence, we propose an adaptive, distributed mechanism enabling individual agents to decide in a decentralized manner when to switch. Moreover, the spatial consequence of the exploitation phase is an emergent collective movement, leading to the aggregation of the collective at the iso-contours of the mean intensity of the environmental field in the spatial domain. Examples of potential applications for such a fully distributed collective estimation model are spillage capturing and source localization.
翻译:准确和速度之间的权衡被认为是个人和集体决策的根本。在本文中,我们侧重于集体估算,作为集体决策的范例。我们的任务之一是估计环境中一个理想特征的平均急剧强度。我们提出的解决方案包括勘探和开发阶段,在这些阶段中,转换时间是一个决定两个阶段之间平衡的因素。通过将完全准确性分解为偏差和差异,我们解释说,多样性和社会互动可以促进集体决策的准确性。我们还展示了勘探-反开发权衡如何与速度-Vs-准确性交易相联系。我们工作的一个重要发现是,在速度和准确性之间有最佳的探索期限。这一期限不能在未知环境中从线上决定。因此,我们提议了一个适应性、分布式的机制,使个别代理人能够以分散方式决定何时转换。此外,开发阶段的空间后果是新出现的集体运动,导致在空间领域环境模型的平均密集度上将集体组合在一起。一个显著的发现是我们工作发现的一个发现是,在空间领域进行探索以牺牲速度和准确性之间有最佳的时间间隔。因此,无法在未知的环境中确定这一期限。因此,我们建议一个适应性、分散的集体应用的可能性是完全分散于这种来源。