We present methods and tools that significantly improve the ability to estimate quantities and fields which are difficult to directly measure, such as the fluidity of ice, using point data sources, such as satellite altimetry. These work with both sparse and dense point data with estimated quantities and fields becoming more accurate as the number of measurements are increased. Such quantities and fields are often used as inputs to mathematical models that are used to make predictions so improving their accuracy is of vital importance. We demonstrate how our methods and tools can increase the accuracy of results, ensure posterior consistency, and aid discourse between modellers and experimenters. To do this, we bring point data into the finite element method ecosystem as discontinuous fields on meshes of disconnected vertices. Point evaluation can then be formulated as a finite element interpolation operation (dual-evaluation). Our new abstractions are well-suited to automation. We demonstrate this by implementing them in Firedrake, which generates highly optimised code for solving PDEs with the finite element method. Our solution integrates with dolfin-adjoint/pyadjoint which allows PDE-constrained optimisation problems, such as data assimilation, to be solved through forward and adjoint mode automatic differentiation. We demonstrate our new functionality through examples in the fields of groundwater hydrology and glaciology.


翻译:在Firedrake和Icepack中的一致性点数据同化 我们提出了方法和工具,显著改善了使用点数据源(如卫星高程计)估计难以直接测量的数量和场(如冰的流动性)的能力。这些工具可以处理稀疏和密集的点数据,随着测量数量的增加,估算出的数量和场越来越准确。这些数量和场通常被用作数学模型的输入,用于进行预测,因此提高它们的准确性非常重要。我们演示了我们的方法和工具如何提高结果的准确性,确保后验一致性,并促进模拟者和实验人员之间的交流。为此,我们将点数据作为不连续节点的网格上的场带入有限元方法生态系统中。然后,点估算可以被构造为有限元插值操作(对偶估算)。我们的新抽象非常适合自动化。我们通过在Firedrake中实现它们来演示这一点,Firedrake会生成用于求解带有有限元方法的PDEs的高度优化的代码。我们的解决方案与dolfin-adjoint/pyadjoint集成,这允许通过正反向模式自动差分解决PDE限制的优化问题,例如数据同化。我们通过地下水水文学和冰川学领域的示例演示了我们的新功能。

0
下载
关闭预览

相关内容

【2022新书】机器学习基础,225页pdf,Machine Learning The Basics
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
0+阅读 · 2023年5月26日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员