Resilience testing, which measures the ability to minimize service degradation caused by unexpected failures, is crucial for microservice systems. The current practice for resilience testing relies on manually defining rules for different microservice systems. Due to the diverse business logic of microservices, there are no one-size-fits-all microservice resilience testing rules. As the quantity and dynamic of microservices and failures largely increase, manual configuration exhibits its scalability and adaptivity issues. To overcome the two issues, we empirically compare the impacts of common failures in the resilient and unresilient deployments of a benchmark microservice system. Our study demonstrates that the resilient deployment can block the propagation of degradation from system performance metrics (e.g., memory usage) to business metrics (e.g., response latency). In this paper, we propose AVERT, the first AdaptiVE Resilience Testing framework for microservice systems. AVERT first injects failures into microservices and collects available monitoring metrics. Then AVERT ranks all the monitoring metrics according to their contributions to the overall service degradation caused by the injected failures. Lastly, AVERT produces a resilience index by how much the degradation in system performance metrics propagates to the degradation in business metrics. The higher the degradation propagation, the lower the resilience of the microservice system. We evaluate AVERT on two open-source benchmark microservice systems. The experimental results show that AVERT can accurately and efficiently test the resilience of microservice systems.
翻译:暂无翻译