User engagement is crucial to the long-term success of a mobile app. Several metrics, such as dwell time, have been used for measuring user engagement. However, how to effectively predict user engagement in the context of mobile apps is still an open research question. For example, do the mobile usage contexts (e.g.,~time of day) in which users access mobile apps impact their dwell time? Answers to such questions could help mobile operating system and publishers to optimize advertising and service placement. In this paper, we first conduct an empirical study for assessing how user characteristics, temporal features, and the short/long-term contexts contribute to gains in predicting users' app dwell time on the population level. The comprehensive analysis is conducted on large app usage logs collected through a mobile advertising company. The dataset covers more than 12K anonymous users and 1.3 million log events. Based on the analysis, we further investigate a novel mobile app engagement prediction problem -- can we predict simultaneously what app the user will use next and how long he/she will stay on that app? We propose several strategies for this joint prediction problem and demonstrate that our model can improve the performance significantly when compared with the state-of-the-art baselines. Our work can help mobile system developers in designing a better and more engagement-aware mobile app user experience.
翻译:用户参与对于移动应用程序的长期成功至关重要。 数种衡量用户参与情况的方法,如时间间隔等,已经用于衡量用户参与情况。 然而,如何有效预测用户在移动应用程序方面的参与仍然是一个开放式研究问题。例如,用户使用移动应用程序的移动使用环境(例如每天时间)是否影响其使用时间?这些问题的答案可以帮助移动操作系统和出版商优化广告和服务定位。在本文中,我们首先进行一项经验性研究,评估用户特点、时间特征和短期/长期背景如何有助于预测用户在人口层面的应用程序占用时间。全面分析是对通过移动广告公司收集的大型应用程序使用日志进行的。数据集覆盖超过12K匿名用户和130万个日志事件。根据分析,我们进一步调查一个新的移动应用程序参与预测问题 -- 我们能否同时预测用户今后将使用何种应用,以及他/她将在该软件上停留多久?我们为这一联合预测问题提出了几项战略,并表明我们的模型能够大大改进通过移动用户参与基线与我们用户设计更好的移动数据库时的绩效。