Extracting relevant features from data sets where the number of observations ($n$) is much smaller then the number of predictors ($p$) is a major challenge in modern statistics. Sorted L-One Penalized Estimation (SLOPE), a generalization of the lasso, is a promising method within this setting. Current numerical procedures for SLOPE, however, lack the efficiency that respective tools for the lasso enjoy, particularly in the context of estimating a complete regularization path. A key component in the efficiency of the lasso is predictor screening rules: rules that allow predictors to be discarded before estimating the model. This is the first paper to establish such a rule for SLOPE. We develop a screening rule for SLOPE by examining its subdifferential and show that this rule is a generalization of the strong rule for the lasso. Our rule is heuristic, which means that it may discard predictors erroneously. We present conditions under which this may happen and show that such situations are rare and easily safeguarded against by a simple check of the optimality conditions. Our numerical experiments show that the rule performs well in practice, leading to improvements by orders of magnitude for data in the $p \gg n$ domain, as well as incurring no additional computational overhead when $n \gg p$. We also examine the effect of correlation structures in the design matrix on the rule and discuss algorithmic strategies for employing the rule. Finally, we provide an efficient implementation of the rule in our R package SLOPE.
翻译:从数据集中提取相关特征,其中观测次数(美元)要少得多,然后预测者数目(p$)是现代统计中的一大挑战。对L-Oone惩罚性估计(SLOPE)进行分类,这是对L-Oone惩罚性估计(SLOPE)的概括,是这一背景下一个很有希望的方法。但是,SLOPE目前的数字程序缺乏各自工具在Lasso方面的效率,特别是在估计完全的正规化路径方面。Lasso效率的一个关键部分是预测或筛选规则:允许在估计模型之前抛弃预测者的规则。这是为SLOPE制定这种规则的第一份文件。我们通过审查SLOPE的次要偏差性来为SLOPE制定筛选规则,并表明这一规则是对于LOPE的强性规则的概括性,这意味着它可能会被错误地抛弃预测者。我们提出可能发生这种情况的条件,并表明这种情形是罕见的,而且很容易通过对最佳性条件的检查来加以保护。我们的数字实验显示,规则在实际中很好地执行SLO值规则,在SLO值结构中,我们最终地在设计中进行一个不断的计算。