Testing uniformity of a sample supported on the hypersphere is one of the first steps when analysing multivariate data for which only the directions (and not the magnitudes) are of interest. In this work, a projection-based Cram\'er-von Mises test of uniformity on the hypersphere is introduced. This test can be regarded as an extension of the well-known Watson test of circular uniformity to the hypersphere. The null asymptotic distribution of the test statistic is obtained and, via numerical experiments, shown to be tractable and practical. A novel study on the uniformity of the distribution of craters on Venus illustrates the usage of the test.


翻译:在分析多变量数据时,在超视镜上支持的样本的统一性测试是第一步之一,分析这些数据时,只有方向(而不是数量)才有意义。在这项工作中,采用了基于投射的Cram\'er-von Mises 测试,对超视镜进行了统一性测试。这一测试可被视为著名的Watson测试,将圆形统一的测试扩展至超视镜。获得测试统计数据的无症状分布,通过数字实验显示,测试统计数据的可移植性和实用性。关于金星上弹坑分布的统一性的新研究展示了测试的使用情况。

0
下载
关闭预览

相关内容

【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
91+阅读 · 2020年7月4日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
已删除
将门创投
3+阅读 · 2019年1月15日
Arxiv
0+阅读 · 2021年6月15日
Arxiv
0+阅读 · 2021年6月11日
VIP会员
相关VIP内容
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
91+阅读 · 2020年7月4日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
3+阅读 · 2019年1月15日
Top
微信扫码咨询专知VIP会员