Convolutional Neural Networks have been extensively explored in the task of automatic music tagging. The problem can be approached by using either engineered time-frequency features or raw audio as input. Modulation filter bank representations that have been actively researched as a basis for timbre perception have the potential to facilitate the extraction of perceptually salient features. We explore end-to-end learned front-ends for audio representation learning, ModNet and SincModNet, that incorporate a temporal modulation processing block. The structure is effectively analogous to a modulation filter bank, where the FIR filter center frequencies are learned in a data-driven manner. The expectation is that a perceptually motivated filter bank can provide a useful representation for identifying music features. Our experimental results provide a fully visualisable and interpretable front-end temporal modulation decomposition of raw audio. We evaluate the performance of our model against the state-of-the-art of music tagging on the MagnaTagATune dataset. We analyse the impact on performance for particular tags when time-frequency bands are subsampled by the modulation filters at a progressively reduced rate. We demonstrate that modulation filtering provides promising results for music tagging and feature representation, without using extensive musical domain knowledge in the design of this front-end.


翻译:自动音乐标记任务中广泛探索了进化神经网络。 这个问题可以通过工程设计的时间频率特性或原始音频作为输入来解决这个问题。 已经积极研究作为丁字形感知基础的移动式过滤银行代表机构有可能促进提取感官显著特征。 我们探索了用于音频演示学习的端到端学前端知识, ModNet 和 SincModNet, 其中包括一个时间调制处理块。 结构实际上类似于一个调制过滤库, 即FIR过滤中心频率以数据驱动的方式学习。 期望一个感知性的过滤库可以为识别音乐特征提供有用的代表。 我们的实验结果提供了完全可视性和可解释的原始音频前端时间调制解调。 我们对照在MagnaTagAtune数据集上标注的音乐的状态-艺术的性能评估我们模型的性能。 我们分析了当时间频频带以数据驱动的方式进行分解时对特定标签的性能影响。 我们的预期是,一个感知觉感知性的过滤器可以提供一种有希望的微的磁带的磁带的模型, 展示模型的模型, 以逐渐降低的磁带。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
4+阅读 · 2019年9月5日
Music Transformer
Arxiv
5+阅读 · 2018年12月12日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
Arxiv
6+阅读 · 2018年7月29日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Top
微信扫码咨询专知VIP会员