Clinical coding is the task of transforming medical information in a patient's health records into structured codes so that they can be used for statistical analysis. This is a cognitive and time-consuming task that follows a standard process in order to achieve a high level of consistency. Clinical coding could potentially be supported by an automated system to improve the efficiency and accuracy of the process. We introduce the idea of automated clinical coding and summarise its challenges from the perspective of Artificial Intelligence (AI) and Natural Language Processing (NLP), based on the literature, our project experience over the past two and half years (late 2019 - early 2022), and discussions with clinical coding experts in Scotland and the UK. Our research reveals the gaps between the current deep learning-based approach applied to clinical coding and the need for explainability and consistency in real-world practice. Knowledge-based methods that represent and reason the standard, explainable process of a task may need to be incorporated into deep learning-based methods for clinical coding. Automated clinical coding is a promising task for AI, despite the technical and organisational challenges. Coders are needed to be involved in the development process. There is much to achieve to develop and deploy an AI-based automated system to support coding in the next five years and beyond.
翻译:临床编码是将患者健康记录中的医疗信息转换成结构化代码的任务,以便用于统计分析,这是一项认知和耗时的任务,遵循一个标准程序,以实现高度的一致性。临床编码有可能得到自动化系统的支持,以提高该程序的效率和准确性。我们从人工智能(AI)和自然语言处理(NLP)的角度引入自动临床编码的概念,并总结其挑战。根据文献、我们过去两年半(2019年末至2022年初)的项目经验,以及与苏格兰和联合王国临床编码专家的讨论,这是一项认知和耗时的任务。我们的研究揭示了临床编码中目前采用的深层次学习方法与现实世界实践解释性和一致性的必要性之间的差距。基于知识的方法代表标准,解释一项任务的流程可能需要纳入基于深层次学习的临床编码方法。自动化临床编码是AI的一项很有希望的任务,尽管技术和组织上存在挑战,但对于AI来说是一项很有希望的任务。在接下来的技术和组织挑战之后,还需要在自动化开发过程中提供大量支持。