The integration of large language models (LLMs) into recommendation systems has revealed promising potential through their capacity to extract world knowledge for enhanced reasoning capabilities. However, current methodologies that adopt static schema-based prompting mechanisms encounter significant limitations: (1) they employ universal template structures that neglect the multi-faceted nature of user preference diversity; (2) they implement superficial alignment between semantic knowledge representations and behavioral feature spaces without achieving comprehensive latent space integration. To address these challenges, we introduce CoCo, an end-to-end framework that dynamically constructs user-specific contextual knowledge embeddings through a dual-mechanism approach. Our method realizes profound integration of semantic and behavioral latent dimensions via adaptive knowledge fusion and contradiction resolution modules. Experimental evaluations across diverse benchmark datasets and an enterprise-level e-commerce platform demonstrate CoCo's superiority, achieving a maximum 8.58% improvement over seven cutting-edge methods in recommendation accuracy. The framework's deployment on a production advertising system resulted in a 1.91% sales growth, validating its practical effectiveness. With its modular design and model-agnostic architecture, CoCo provides a versatile solution for next-generation recommendation systems requiring both knowledge-enhanced reasoning and personalized adaptation.
翻译:将大型语言模型(LLM)整合到推荐系统中,通过其提取世界知识以增强推理能力,已展现出广阔前景。然而,当前采用基于静态模式提示机制的方法存在显著局限性:(1)它们采用通用模板结构,忽视了用户偏好多样性的多面性;(2)它们在语义知识表征与行为特征空间之间仅实现了浅层对齐,未能达成全面的潜在空间整合。为解决这些挑战,我们提出了CoCo——一种通过双机制方法动态构建用户特定上下文知识嵌入的端到端框架。我们的方法通过自适应知识融合与矛盾消解模块,实现了语义与行为潜在维度的深度融合。在多样化基准数据集及企业级电商平台上的实验评估表明,CoCo在推荐准确率上较七种前沿方法最高提升达8.58%,展现出显著优势。该框架在生产环境广告系统中的部署实现了1.91%的销售额增长,验证了其实际有效性。凭借其模块化设计与模型无关的架构,CoCo为需要知识增强推理与个性化适配的新一代推荐系统提供了通用解决方案。