Selecting diverse and important items, called landmarks, from a large set is a problem of interest in machine learning. As a specific example, in order to deal with large training sets, kernel methods often rely on low rank matrix Nystr\"om approximations based on the selection or sampling of landmarks. In this context, we propose a deterministic and a randomized adaptive algorithm for selecting landmark points within a training data set. These landmarks are related to the minima of a sequence of kernelized Christoffel functions. Beyond the known connection between Christoffel functions and leverage scores, a connection of our method with finite determinantal point processes (DPPs) is also explained. Namely, our construction promotes diversity among important landmark points in a way similar to DPPs. Also, we explain how our randomized adaptive algorithm can influence the accuracy of Kernel Ridge Regression.


翻译:从一个大系列中选择各种重要项目,称为里程碑,这是对机器学习感兴趣的一个问题。作为一个具体的例子,为了处理大型训练组,内核方法往往依赖基于选择或抽样地标的低级矩阵 Nystr\\'om近似值。在这方面,我们提议在培训数据集中选择里程碑点的确定和随机适应算法。这些里程碑与内核化的Christoffel 函数序列的小型模型有关。除了已知的Christoffel 函数和杠杆分数之间的联系外,我们的方法与有限定点进程(DPPs)的联系也得到了解释。也就是说,我们的构造促进重要里程碑点之间的多样性,其方式与DPP相似。此外,我们还解释了我们随机的适应算法如何影响Kernel Ridge Revicion的准确性。

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
62+阅读 · 2021年8月20日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
159+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
元学习(Meta Learning)最全论文、视频、书籍资源整理
深度学习与NLP
22+阅读 · 2019年6月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
多目标跟踪:SORT和Deep SORT
极市平台
47+阅读 · 2019年3月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
时间序列算法ARIMA介绍
凡人机器学习
5+阅读 · 2017年6月2日
Arxiv
4+阅读 · 2018年3月14日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
元学习(Meta Learning)最全论文、视频、书籍资源整理
深度学习与NLP
22+阅读 · 2019年6月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
多目标跟踪:SORT和Deep SORT
极市平台
47+阅读 · 2019年3月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
时间序列算法ARIMA介绍
凡人机器学习
5+阅读 · 2017年6月2日
Top
微信扫码咨询专知VIP会员